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A method for calculating the self-induced motion of a vortex sheet using discrete 
vortex elements is presented. Vortex panels and vortex filaments are used to simulate 
two-dimensional and axisymmetric vortex sheet roll-up. A straightforward application 
using vortex elements to simulate the motion of a disk of vorticity with an elliptic 
circulation distribution yields unsatisfactory results where the vortex elements move in 
a chaotic manner. The difficulty is assumed to be due to the inability of a finite number 
of discrete vortex elements to model the singularity at the sheet edge and due to large 
velocity calculation errors which result from uneven sheet stretching. 

A model of the inner portion of the spiral is introduced to eliminate the difficulty 
with the sheet edge singularity. The model replaces the outermost portion of the sheet 
with a single vortex of equivalent circulation and a number of higher order terms which 
account 'for the asymmetry of the spiral. The effect of the uneven sheet stretching is 
minimized by periodic rediscretization of the sheet. 

The resulting discrete vortex model is applied to both two-dimensional and axisym- 
metric sheets. The two-dimensional roll-up is compared to the solution for a semi-infinite 
sheet with good results. The axisymmetric cases show a smooth roll-up with none of 
the chaotic behavior seen in the straightforward approach. 

'Adapted from the S.M. Thesis by John P. Kantelis, "Calculations of Axisymmetric Vortex Sheet 
Roll-Up Using a Panel and a Filament Model", M.I.T., February, 1986. 
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Chapter 1 

Introduction 

A surface of discontinuity in the tangential component of the velocity field is called 

a vortex sheet. This three-dimensional surface, or sheet, can be thought of as a slip 

layer which is composed of vortex lines. A requirement for the existence of a vortex 

sheet is that the effect of viscous diffusion be very small, i.e., that the Reynolds number 

is very large. In the ideal case where the effect of viscosity is reduced to zero, the sheet 

is taken to be of zero thickness. In a real fluid the effect of viscosity is to immediately 

diffuse the vortex sheet into a shear layer of finite thickness, the rate of growth of the 

layer thickness being dependent on the fluid viscosity. 

In real fluids, vortex layers of finite thickness may form whenever a body with a 

sharp trailing edge such as a wing, or other lifting surface, moves through the fluid. 

This is the result of the generation of vorticity along the surface of the body ahead of 

the trailing edge due to viscosity. In the ideal fluid model, this condition is simulated 

by imposing the Kutta condition artificially at the sharp edge and the result is a vortex 

sheet of zero thickness. In the ideal case, it is also convenient to think of vortex sheets 

as being formed by moving a thin object through a fluid and then dissolving the object. 

At that inatant there exists a vortex sheet in the shape of the object. An example of 

this is found in a paper by Taylor [22]. 

The most common examples of vortex sheets (or finite shear layers) are those which 

are shed into the wake at the trailing edge of an aircraft wing or helicopter rotor. The 

ensueing motion of these sheets is characterized by a rapid rolling up of the edges of the 
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sheet into concentrated vortex structures. Knowledge of the behavior of these sheets 

is desirable since they can have important influences on the behavior of the aircraft 

itself, particularly rotary-wing aircraft, as well as on nearby aircraft. The introduction 

of very heavy aircraft in recent years has renewed interest in the study of vortex sheet 

roll-up. These aircraft can produce very powerful rolled-up wake regions known as wing 

tip vortices which can be very dangerous to smaller aircraft should they happen to fly 

through them. Helicopter rotor performance is also greatly effected by these vortical 

regions since the loading on a helicopter rotor is strongly coupled with the motion of 

the rolled-up vortices in its own wake. 

This work is directed at developing a reliable and accurate method for calculating the 

motion of vortex sheets, particularly the motion and development of the sheet edge roll- 

up. Two-dimensional and axisymmetric sheets are studied with circulation distributions 

similar to that of the wake shed by an elliptically loaded wing or a helicopter rotor. The 

sheets are modelled using a discrete vortex element simulation where the continuous 

structure of the sheet is represented as a series of individual flat vortex panels or vortex 

filaments. The elements are followed in time in a Lagrangian manner with the velocities 

calculated numerically. 

1.1 Vortex Sheet Modelling 

Since the wake of an aircraft wing or helicopter rotor is characterized by very high 

local shear, it is a convenient and accurate approximation to model it as a vortex sheet 

immersed in a potential flow. Helmholtz’ theorems require that regions of vorticity in an 

inviscid fluid convect through the fluid with the local flow velocity. In an ideal fluid, any 

fluid element retains its vorticity as it moves. This is a very useful property since only 

the fluid particles having vorticity, namely the vortex sheet, need to be tracked as the 

flow evolves in time. This approach is commonly refered to as a Lagrangian description 
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of the flowfield since individual fluid particles of fixed identity are being tracked. A 

significant advantage computationally is realized here since typically in these types of 

flows only a very small region of the flow is of non-zero vorticity. 

The exact representation of the time evolution of a vortex sheet is given by a difficult 

singular integro-differential equation. For the general case the solution of this equation 

is not practical and a numerical approach is taken. Typically, the continuous sheet is 

divided into a finite number of discrete elements, e.g., vortex filaments or flat panels, 

and each of these elements is tracked individually based on its local velocity obtained 

by the Biot-Savart law or some other method. 

1.2 Previous Work 

The first attempt at a flow computation for the roll-up of a vortex sheet using 

these techniques was performed by Rosenhead [18] in 1931. Rosenhead modelled a two- 

dimensional vortex sheet using a number of point vortices whose motion was tracked 

by computing the mutual induced velocities of all of the other vortices. It is perhaps 

fortuitous that Rosenhead had no computer available to do the arithmetic, forcing 

the work to be done by hand because it appears now that the fairly good results he 

achieved were in part due to the artificial smoothing of the data introduced by the 

manual computations. 

Later effort by Birkoff and Fisher [3] using a more refined computer analysis with 

more vortices than that used by Rosenhead resulted in much poorer results. The reason 

for this is thought to rest in the question of the existence and uniqueness of this initial 

value problem. It seems that an increasing number of point vortices to model the sheet 

does not yield a consistent solution of the original problem. It is not even clear that the 

inviscid problem is well-posed, as described by Saffman and Baker [20]. They indicate 
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that it is possible that smooth solutions may not exist for more than a finite amount of 

time. 

Another difficulty in the analysis of vortex sheets is their inherent instability. A 

two-dimensional vortex sheet is known to be unstable to small disturbances, the classic 

Kelvin-Helmholtz instability. This complicates the matter of computations for the roll- 

up of vortex sheets in that there are other reasons, related to the numerical procedure, 

why the sheet may become unstable. This instability, however, may be suppressed by 

artificially smoothing the sheet between time steps. Moore [12] shows this for the case 

of a circular vortex sheet. Smoothing has been applied indirectly in a number of vortex 

methods in the form of rediscretization of the sheet at regular intervals in time. This 

method was first used by Fink and Soh [7], [8] where their point-vortex model of the 

two-dimensional vortex sheet is rediscretized at every time step to ensure that the point- 

vortices are equally spaced. The smoothing effect was a secondary consequence of the 

original motivation of Fink and Soh to rediscretize the sheet to reduce the truncation 

error in their velocity calculation. A numerical solution technique presented by Pullin 

[16] avoids the stability issue by computing the roll-up of a semi-infinite parabolically 

loaded two-dimensional sheet as a similarity solution. Pullin writes the governing equa- 

tion in a pseudo-time dependent similarity form which he solves iteratively for the sheet 

shape. The inner region of the resulting spiral agrees well with Kaden’s similarity solu- 

tion [lo]. Pullin was also able to obtain the value of the arbitrary parameter inherent 

in Kaden’s solution. 

... 

Additional two-dimensional models of vortex sheets have been presented including 

point-vortex models, vortex blob, cloud-in-cell, and panel methods. The vortex blob 

method [5] eliminates the singularity in the velocity field as the point-vortex is ap- 

proached by smearing out the vortex into a small finite region. This method is effective 

although somewhat arbitrary. The cloud-in-cell method [ 11 computes the velocities at 

each of the point vortices by solving the Poisson equation for the streamfunction and 
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then differentiating to obtain the velocity. The principle advantage of this method is its 

greatly increased computational efficiency, allowing for a greater number of vortices to 

simulate the flow. A difficulty with the method is the appearence of small scale struc- 

ture in the solution which appears to be grid dependent. The cloud-in-cell method has 

additional difficulties in axisymmetric flow where the self-induced velocities due to cur- 

vature are strongly grid dependent (Roberts and Murman [17]). Panel methods offer an 

advantage over point-vortex methods in that they yield a more accurate calculation of 

the induced velocity. Hoeijmakers and Vaatstra 191 presented a two-dimensional panel 

method which uses a splining technique for recomputing the sheet geometry at each 

time step. 

I 

1.3 Motivation for this Study 

The purpose of this work is to extend the analysis of two-dimensional vortex sheets 

performed by authors such as Fink and Soh and Hoeijmakers into axisymmetric vortex 

sheets modelled with circular vortex panels and to compare the results with those ob- 

tained using circular vortex filaments. Axisymmetric sheets, being three-dimensional, 

have the added complexity of having additional self-induced velocity components. This 

arises from the well known fact that a curved vortex filament induces a velocity on itself. 

A combination of the methods developed for the two-dimensional sheets are employed 

and adapted for use on three-dimensional sheets. 

The validity of the method is demonstrated by computing the roll-up of a two- 

dimensional vortex sheet similar to  the one shed by an elliptically loaded wing and 

comparing the results to the similarity solution for the semi-infinite sheet given by 

Kaden. 

The time evolution of two general configurations of axisymmetric sheet are studied, 
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the initially flat vortex disk resulting from a translating solid disk which suddenly dis- 

appears (i.e., Taylor’s problem), and a disk of vorticity more closely resembling that 

which would be produced by a helicopter rotor in hover. The translating disk is a good 

starting point for a study of this type since it is the axisymmetric analogue of the two- 

dimensional wake shed by an elliptically loaded wing. This later flow is certainly one 

of the most widely studied configurations and as such has a large assortment of results 

for comparison from previous studies in two-dimensions. The helicopter rotor case has 

more practical value where several of the disks may be stacked on top of each other to 

simulate an evolving helicopter wake. 
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Chapter 2 

Problem Statement and Discrete Model 

2.1 Introduction 

The problem addressed here is that of an infinitely thin shear layer in an inviscid 

and otherwise irrotational fluid. The shear layer, hereafter refered to as a vortex sheet, 

convects through the fluid with its own induced velocity. Flows of this type are governed 

by Helmholtz' vortex laws which state that the vorticity in the flow is conserved in time 

and that the vorticity is associated with material particles. That is, any fluid particle 

which had a certain amount of vorticity at the start of the flow will have the same 

vorticity for all time and any particle which was irrotational at  the start will remain 

irrotational. Furthermore, it can be shown that the velocity field is uniquely determined 

by the distribution of vorticity. 

This is used to advantage here in that in order to follow the motion of the entire 

flow, only the motion of those particles which are rotational need be followed. This is 

very useful in that the rotational part of the flow is confined to a sheet. So by tracking 

only the convection of vorticity, the entire flowfield may be reconstructed. This type of 

analysis of motion is generally refered to as a Lagrangian analysis. 

The specific problem of interest is the motion of an axisymmetric vortex sheet, or 

disk. As shown by Batchelor [2], the velocity field, v(Z),  is given by 
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where $= 2'- z', r" is the strength of the sheet at the point z', and u extends over the 

entire sheet. The resulting motion is then given by the solution of the integro-differential 

equation formed from Equation 2.1 with v(2') = dZ/dt. 

This study will examine the motion of two axisymmetric sheets in particular, a 

sheet with a distribution of vorticity similar to that in the wake of an elliptically loaded 

wing and a distribution more typical of that in the wake of a helicopter rotor in hover. 

The initial motion of each of these cases is approximately known from the results of 

Kaden's similarity solution [ 101 for a two-dimensional semi-infinite vortex sheet. This 

sheet has a vorticity distribution consistent with a parabolic loading which very strongly 

resembles the caes  considered here near the edge. Therefore, in the initial time period 

the behavior should be similar. Kaden's solution shows that the sheet immediately rolls 

up into an infinitely long logarithmic spiral at the tip singularity. It will be seen that 

this singularity is a cause of many problems in this type of analysis, however, it must 

be dealt with rationally since this feature is the driving force of the phenomena. 

The complexity of Equation 2.1 makes it unrealistic to expect an analytic solution 

for the vortex sheet roll-up, therefore a numerical approach is taken. The standard 

numerical method is to follow the motion of only a finite number of points along the 

sheet, each of which is assumed to represent the motion of an associated small piece 

of sheet, or, sheet segment. The problem is then to accurately calculate the induced 

velocities at these points, i.e., that which would result from evaluating Equation 2.1 

over each of the sheet segments. Due to the singular nature of Equation 2.1 and due 

to the curvature of the sheet the self-induced component of a segment on itself must 

be treated with some care. Given the induced velocities the points are tracked as they 

convect through the fluid. The two general approaches to sheet discretization have been 

to model the segments using vortex panels or vortex filaments. This will be done for 

both two and three-dimensional flows. 
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The vortex panel method involves discretizing the sheet into a finite number of seg- 

ments and then modelling each segment as a curved or straight panel of some predefined 

shape and strength distribution. The velocity field induced by an axisymmetric vortex 

panel is given by Sugioka [21] and is used here in a comparison with a filament model. 

The vortex filament method involves a further simplification in that all of the circulation 

contained in each segment is concentrated into a single vortex filament located at the 

center of the segment. The self-induced velocity of the segment is then taken to be that 

of the vortex filament. 

At large distances from the sheet the induced velocities predicted by the panel and 

the filament models agree; however, as the sheet is approached, the flow field predicted 

by the panel model is smoother and more accurate. Both models display a large inac- 

curacy in the induced velocity field at close range due to the inherent "graininess" of 

the discrete models. Whereas the vortex sheet is a continuous structure, the models 

considered here are discrete in that a singularity in the velocity field is present at each 

vortex or panel edge. 

Another method is to represent the circular vortex elements with sections of straight 

vortex filaments arranged into polygons. The velocity of each of the straight pieces is 

determined by evaluating the Biot-Savart integral over all of the remaining pieces. This 

is commonly known as the cut-off method. The advantage over axisymmetric panels or 

filaments is that the polygons will allow the sheet to develop in a fully three dimensional 

manner. The finite length of the elements introduces an effective core size with the 

representation of a vortex ring by a polygon. While not evaluated here, the relationship 

between a polygon and a ring is described in Appendix A. The polygon is the basis of 

free wake calculations that use vortex quadralaterals. The equivalence of these methods 

for axisymmetric flows will be considered in a later portion of the study. 
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2.2 Vortex Panel Model 

A detailed account of the induced velocity of a vortex panel is given by Sugioka [21] 

and is only outlined here. 

In the vortex panel model, the axisymmetric vortex sheet is subdivided into a number 

of flat axisymmetric panels or bands. Each of the panels has a total strength equal to the 

circulation of the sheet segment which it represents and is considered to be uniformly 

distributed over the panel. A description of a vortex panel and the coordinate system 

used in what follows is presented in Figure 2.1. The axisymmetric sheet geometry is 

described by a cylindrical coordinate system with r as the radial coordinate and z as the 

axial coordinate. All of the results presented here are for symmetry in the azimuthal 

direction. For the inner solution analysis, a panel centered coordinate system with an 

origin at the panel center is more convenient. The velocity component in the z or r 

direction is u and the component in the y or z direction is w .  

Sugioka obtained a uniformly valid expression for the induced velocity field of the 

panel by the method of matched asymptotic expansions. The solution approaches that 

of a circular vortex filament at large distances from the panel. Near the panel it closely 

resembles the two-dimensional solution for a vortex panel but includes (to first order) 

the effects of curvature. The velocity field is given as 

where 

+ arctan W - Q s  
9 4  

W - Q S  

uin = 2 (1 + 5) [-sinelog 9 2  - + 2coso arctan 

( 9 4  
vin = - (1 + h) [ - cos e log - - 2 sin 8 arctan + arctan - 

( 4% 91 

n 9 2  

47r 91 
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and 

81 =Qs + 2aQs+ w2 

8 4  = ycos8 - zsin8 

Qs = z2 + y2 

r1 = least distance from (z,y) to the panel center 

r2 = greatest distance from (z,y) to the panel center 

where w is the half width of a panel, 21cw is the panel circulation or strength, R is the 

radius of the panel center, and K and E are the complete elliptic integrals of the first 

and second kinds respectively. 

The components uOU: and vou: are the outer flow solution which is that of a single 

vortex ring. uin and vjn are the inner solution components which are that for the two- 

dimensional panel including the effect of curvature and uio and vio are the components 
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which must be subtracted to complete the matching process. The primary advantage 

of the panel model over the filament model is that the resulting solution is uniformly 

valid in the entire domain including the panel itself (except near the edges) and is more 

accurate as the panel is approached. Additionally, the solution requires that w / R  be 

much less than unity. This is violated as R -+ 0 but since IC + 0 as R -+ 0 this does 

not seem to pose a problem in the numerical method. 

The corresponding expressions for the induced velocity of a two-dimensional vortex 

panel are considerably simpler since the effect of curvature is not present. As given by 

Sugioka in the Cartesian panel centered coordinate system of Figure 2.1, they are: 

W - Q s  + arctan W + Q S ) > ~  (2.4) 

W - 8 3  + arctan ~ + ~ 3 ) > 1  (2.5) 

Q4 8 4  

9 2  -sinelog - + 2cosO 
4lr Qi 

9 2  - COS 6 log - - 2 sin 8 
4n Qi 8 4  

where the Qi, n, and w are the same as for the axisymmetric case. These formulae are 

exact. 

2.3 Vortex Filament Model 

In the vortex filament model, the vorticity disk is modelled as a system of concentric 

circular vortex filaments, or vortex rings, which are initially evenly spaced along the disk. 

Each ring has a strength equal to the amount of circulation contained in the segment 

of the .sheet which it represents. 

As is well known, a curved vortex filament possesses an infinite self-induced velocity 

at all points where its curvature is non-zero. In order to  eliminate this infinite velocity 

it is necessary to consider the vortex rings as having a core of finite thickness with 

distributed vorticity. The self-induced velocity is now finite, but also dependent on 

the assumed distribution of vorticity within the core, which, unfortunately, is arbitrary. 

' 
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However, since the vortex ring is intended to simulate the action of a vortex panel, a 

vorticity distribution may be assigned such that the two models become in some way 

equivalent. For example, as demonstrated by Sugioka [21], for equally spaced filaments 

a distribution of uniform vorticity within a circular core of diameter equal to 0.52 times 

the panel width (i.e., the distance between filaments) will yield equivalent kinetic energy 

and velocity for the two models. This is used as a criterion for determining the vortex 

ring structure. 

For a given core size, the associated velocity field of a vortex ring system may be 

determined by using the results presented in Lamb [ll] for the induced velocity of a 

vortex ring. 

In general, the stream function at a point (r,x) due to a circular vortex filament is 

given by 

where: 

Stokes stream function 

filament strength 

least distance from (r,x) to the ring 

greatest distance from (r,t)  to the ring 

(tl - r2)/(r1+ r2) 

complete elliptic integral of the first kind 

complete elliptic integral of the second kind 

The velocity components in the axial and radial directions are then 
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These are also applicable to  the case of a vortex ring of finite core when the point ( r ,  z )  

is not in or near the core. For ( r , z )  inside the core and at the center, the self-induced 

velocity of the single ring is 

u = o  (2.10) 

where R is the radius of the ring, n is its strength, and c is the radius of the core. 

The two-dimensional form of the vortex filament is the familiar line or point vortex. 

In this case the velocity is given very simply as 

(2.11) 

Uradial = 0 (2.12) 

R 
Uotimuthal = -- 2nr 

where n is the strength of the filament and r is the distance from the filament. In the 

Cartesian coordinate system of Figure 2.1 the (z, y) velocity components are 

z 
V = K -  

r2 

(2.13) 

(2.14) 

Then for either the panel or the filament model, the induced velocity at any position 

i is the summation of the contributions from each of the other elements and its self- 

induced velocity. The equations of motion for each ring or panel i become 
- .  

where for axisymmetric panels: 

(2.15) 

(2.16) 
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ui,j = Equation 2.2 

vi,j = Equation 2.3 

or for axisymmetric filaments: 

ui,j = Equation 2.8 when i # j 
= O  when i = j 

vi,j = Equation 2.7 when i # j 
when i = j = Equation 2.9 

- -  

and for two-dimensional panels: 

ui,j = Equation 2.4 

Vi,j = Equation 2.5 

or for two-dimensional filaments: 

ui j  = Equation 2.13 when i # j 
= O  when i = j 

Vi , j  = Equation 2.14 when i # j 
= O  when i = j 

The motion of the sheet is given by the solution of the system of non-linear ordinary 

differential equations 2.15 and 2.16. 
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Figure 2.1: Vortex Panel and Coordinate Systems 
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Chapter 3 

Numerical Solution of the Evolution Equations 

The system of ordinary differential equations 2.15 and 2.16 governing the motion of 

the vortex filaments may be solved with a variety of numerical procedures. Considered 

here are the Euler method and a fourth-order Runge-Kutta method. Although generally 

more accurate, the Runge-Kutta method is much slower computationally then the Euler 

method, therefore, both methods will be evaluated to determine which has the best 

overall performance for this application. 

3.1 Euler Time Step Procedure 

The Euler method results from expressing the system 2.15 and 2.16 as the first order 

approximation to a Taylor Series. 

where.the superscripts refer to the time step level, i is the vortex element index, At is 

the time step, and i i  and ii are given by Equations 2.15 and 2.16. This method is easy 

to program and therefore suited to initial concept exploration runs, but if suffers from 

lack of accuracy unless the time step is very small. 
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3.2 Runge-Kutta Time Step Procedure 

The Runge-Kutta method results from modelling the solution over a time step as 

a polynomial rather than as a linear function as in the Euler model and is therefore 

more accurate for a given step size. However, the method requires the evaluation of the 

right-hand-side of the differential equations four times within each time step rather than 

once as in the Euler method. Therefore, for the Runge-Kutta method to be preferable 

over the Euler, the Runge-Kutta method needs to achieve accuracy greater that the 

Euler method for time steps that are four times larger. 

The Runge-Kutta method applied to Equations 2.15 and 2.16 yield the following set 

of algebraic equations to be evaluated at each time step: 

ko + 2k1+ 2k2 + k3 
6 

r:+' = rr + 

where 

and 

10 = Ati;(rr, zr) 

11 = Atii(rl + k0/2,  Z? + 10/2) 

12 = Atii(rr + k1/2,  zr + 11/2) 

l3  = Atii(rr + k2, zr + 1 2 )  

where ii and ii are given by Equations 2.15 and 2.16. 
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The value of the time step, At, is determined such that the maximum distance 

moved by any vortex element is limited to a specified value, Az-,. Within each time 

step, after the velocities of all elements on the sheet have been calculated, the time step 

is computed as At = Azmaz/Vmaz where V,,, is the maximum velocity on the sheet. 

The relative merits of the two time step methods will be evaluated in Chapter 4 

where the vortex filament model is tested in a straightforward roll-up calculation. The 

time step procedures are evaluated based on their ability to conserve certain integral 

invarients of the flow; fluid impulse and kinetic energy. 
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.. Chapter 4 

Straightforward Application of Discrete Model 

4.1 Results 

A straightforward application of the vortex filament model to a vortex disk where the 

vortex filaments retained their identity throughout the calculation yields disappointing, 

although not unexpected, results. Similar to results for two-dimensional cases, the 

vortex rings begin to roll-up as expected, but then cease to define a sheet as smooth. 

lines connecting the vortex rings begin to cross over each other. A typical example of this 

for the vorticity sheet generated by the translating disk described earlier and modelled 

by 20 ring is presented in Figure 4.1. This case was run with the Runge-Kutta time 

stepping procedure with At = 0.005. The diameter of each filament core was chosen to 

be 0.52 times the width of the section of disk which it represents as discussed in Section 

2.3. Note that the sheet initially moves as expected but quickly the motion becomes 

chaotic with the sheet crossing itself. As discussed for similar cases in two-dimensions 

by, for example, S d m a n  and Baker [20], increasing the number of vortex rings results 

in no improvement. 

-. 
- 

. .  

4.2 Effect of Time Stepping Procedure 

To eliminate the possibility of the chaotic motion being merely the result of inaccu- 

rate time stepping, the integral quantities mentioned in Section 3.2 may be evaluated 
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and checked for invariance. These invariants, impulse and kinetic energy, should remain 

constant in time. 

The total fluid impulse, given by P / p  = R Icr2 summed over all of the vortex rings, 

is presented for the duration of the simulation in Figure 4.2 for the Euler method and in 

Figure 4.3 for the Runge-Kutta method. Each method was run with step sizes ranging 

from At = 0.1 to At = 0.0001. As expected, the Runge-Kutta procedure is far more 

accurate than the Euler procedure. A step size of At = 0.05 yields a nearly constant 

impulse for the Runge-Kutta method while the Euler method does not achieve constant 

impulse for even the smallest step size used. 

The total kinetic energy of the flow is given by Lamb [ll] as 

c o r n  
Qwdzdr . (4.1) 

T = - r p / O  L __ - 

where w is the vorticity, Q is the streamfunction, and p is the fluid density. Since this 

flow is irrotational everywhere except in the interior of the vortex ring, the energy can 

be expressed simply 89 a summation over each of the rings 

where N is the number of vortex rings and the integration is performed only over the 

filament core sections. For each core section i ,  the streamfunction is written as the sum 

of the contributions of all of the vortex rings including that of ring i itself. 

N 

j=l 

where *i,j is the streamfunction at ring i due to ring j. With this the 

(4.3) 

kinetic energy 
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where 9i,i is the streamfunction at ring i due to ring i .  The first term in the brackets 

is given by Lamb as 

where ni is the strength of ring i ,  & is the radius, and ci is the radius of the core section. 

The second term is evaluated numerically by assuming that Qi,,, given by Equation 2.6, 

is constant over the core section of the ring. 

The resulting kinetic energy for the straightforward case is shown in Figure 4.4 for 

the Euler method and in Figure 4.5 for the Runge-Kutta runs. This shows similar 

results although smaller time steps are needed to achieve constant energy. The kinetic 

energy is not constant for the Runge-Kutta method until the step size is reduced to 

about At = 0.01, while again it doesn't become constant at all for the Euler method. 

These results indicate that the Runge-Kutta time step procedure is not the cause of 

the observed chaotic motion. 

4.3 Suspected Cause of Chaotic Motion 

The reason for this chaotic behavior and lack of smooth roll-up is not known with 

certainty. The two usual arguments are (1) Kelvin-Helmholtz instability and (2) velocity 

calculation error. 

. .  

For the two-dimensional vortex sheet it is shown by Moore [13] that the sheet is 

unstable to small disturbances of any wavelength unless the sheet is rapidly stretching. 

That the sheet is most unstable to shortest wavelengths suggests that the initial value 

problem of two-dimensional sheet roll-up is not well posed. However, Saffman [19] ex- 

plains in a heuristic argument that the extension of the sheet due to stretching also 

extends the disturbances and, hence, their wavelengths. Since the rate of growth of the 
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disturbance decreases with increasing wavelength, the stretching can have a stabilizing 

effect on the motion. Moore and Griffith-Jones [15] and Moore [14] confirm this argu- 

ment, quantitatively, by determining that if the sheet stretches fast enough, such that 

the sheet strength drops off faster than tirne-lI2, then the sheet is stable. Moore then 

applies the result to the tightly wound portion of a two-dimensional roll-up spiral with 

a parabolic distribution of circulation and finds that the condition is met for stability. 

For parts of the sheet where rapid stretching does not occur Moore [12] shows that 

a discrete form of Kelvin-Helmholtz instability can ruin the calculations by amplifying 

the roundsff and truncation errors inherent in the numerical procedures. 

The calculations presented for the straightforward case show that the calculations 

break down in the region of the spiral roll-up where the stretching is greatest and, hence, 

the sheet is moat stable. In addition, the region where the sheet is still nearly flat shows 

no sign of Kelvin-Helmholtz instability. Therefore, it is assumed that the cause of the 

chaotic motion is not due to Kelvin-Helmholtz instability. 

Fink and Soh [7],[8] have demonstrated for the two-dimensional sheet that large 

errors are introduced into the velocity calculations as the vortices move away from the 

centers of their segments. This situation occurs very quickly at the outer edge of the 

sheet where the roll-up takes place. The high concentration of vorticity in this region 

induces very high rates of stretching and moves the vortices away from the centers 

of their segments. Fink and Soh suggest that this is the cause of the chaotic motion 

observed. so quickly during the roll-up process. It is assumed that the same type of 

velocity errors are present in the three-dimensional sheet calculations and that this is 

the immediate cause of the error in the roll-up calculations presented in Figure 4.1. 

A second major source of error in the straightforward approach is in the inability 

of a finite number of discrete elements to model the more tightly wound regions of the 

spiral. As can be seen from Kaden’s similarity solution for the roll-up of a semi-infinite 
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two-dimensional vortex sheet with a parabolic circulation distribution, the inner part 

of the core assumes a logarithmic spiral shape: 

where r and 8 are polar coordinates with origin at the center of the spiral, & is a scaling 

factor, and Y 3 -2/3 as 8 + 00. At any time after the start of the motion the sheet is 

infinitely long and is rolled into loops of rapidly decreasing spacing. It seems doubtful 

that any discrete model could successfully represent this region of the flow. 

In summary, the straightforward approach has two major areas of difficulty: 

1. Arbitrarily large velocity errors result fiom stretching. 

2. Tip region not modelled correctly by a finite number of discrete elements. 
-. - __ - 

These problems are discussed in the next sections. 
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Figure 4.1: Straightforward Application of Discrete Model 
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Chapter 5 

Special Models 

5.1 Model of Singularity at Sheet Edge 

5.1.1 Motivation for Special Model 

A method for reducing the severity of the errors realized in modelling the tightly 

wound portion of the sheet edge in a discrete manner that has been used with some 

success by, for example, Hoeijmakers and Vaatstra [9] is to replace the inner portion of 

the spiral with a single filament of equal strength. As the inner layers of the sheet become 

more closely spaced, they are amalgamated into a single tip vortex ring such that the 

total strength and centroid of the system is preserved. This process is generally refered 

to as core dumping. Criteria for dumping that have been used include: restricting the 

spiral to a maximum number of loops, requiring a minimum number of vortices per 

loop, and amalgamating when the spiral layers move too closely to each other. 

Another motivation for replacing the outer portion of the sheet with a single ring is 

more fundamental. It is doubtful that a finite number of discrete elements would ever 

be able to accurately model the singularity in the flowfield at the tip. This singularity is 

responsible for the initiation of the roll-up at the disk edge. In fact, the roll-up may be 

considered to be the initial condition for the motion of the sheet. The infinite velocity 

singularity at the sheet edge is resolved by the sheet assuming the shape of a spiral of 

infinite arc length placed at the sheet edge at time t = O+. The discrete model discussed 
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here, i.e., a series of equally spaced panels or filaments, does not in any way treat this 

aspect of the flowfield. In fact it may be questioned how any discrete model of a finite 

vortex sheet could show the proper type of roll-up behavior. 

5.1.2 Inner Spiral Model 

The asymmetry of the spiral cross section is neglected when using only a single vortex 

filament to represent the inner part of the spiral. A more accurate representation of the 

sheet edge and inner spiral may be obtained by replacing it with a numerical model of 

the Kaden [lo] similarity solution for the roll-up of a parabolically loaded semi-infinite 

two-dimensional sheet. The asymmetric component included by the Kaden model has 

an effect on the flaw at all points outside of the inner spiral and on the central vortex 

filament itself. Therefore, there are two additional velocity components to be modelled 

when using a single vortex filament to represent the circulation of the inner spiral, (1) 

that of the inner spiral asymmetry on the outer flow, and (2) that of the inner spiral 

asymmetry on the central vortex filament. 

The inner spiral model is illustrated in Figure 5.1. The inner part of the spiral, i.e., 

the portion of the sheet contained within the circle of radius R;, is considered to be 

replaced with an equivalent flow system consisting of a single vortex filament of equal 

strength, K', and a number of higher order flow elements. The filament, located at the 

center of the spiral, accounts for all of the circulation in the circle R; and is also used 

to track.the motion of the spiral center itself. The higher order elements model the 

asymmetry of the spiral and have no circulation. These act on both the sheet outside 

of the circle R; and on the central vortex filament. 

The additional asymmetric velocity components are time dependent. As the roll- 

up progresses, the inner layers of the spiral move more closely together reducing the 

asymmetry and its effect on the flow. This may be seen by considering the sheet at 
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two different times, t l  and t 2  where t 2  >' t l  as shown in Figure 5.2. The solid lines 

indicate the part of the sheet that is modelled using vortex panels or filaments while 

the broken lines indicate the part that is modelled by the inner spiral model. Since 

the points on the sheet are material particles, the edge of the sheet is always identified 

by the same fluid particle. In Figure 5.2 this particle is indicated as point A. The 

nature of the roll-up requires that point A always remain at the same distance from the 

spiral center, although it revolves around it. This constant distance, Ri, is used as a 

reference parameter. Observe that the two inner spirals have the same diameter but that 

the configuration at time t = t 2  shows the spiral layers much closer together. This trend 

toward symmetry demonstrates the time dependency of the inner spiral model. As time 

increases and more turns are formed in the spiral, the contribution of the asymmetric 

components approaches zero. 

The flow components due to the asymmetry of the inner spiral may be found by using 

the results of Pullin [16] for the roll-up of a parabolically loaded two-dimensional semi- 

infinite sheet. Pullin studied the roll-up by transforming the unsteady-time dependent 

problem into an integrodifferential form using a similarity parameter involving time 

and circulation. This eliminated the need to study the problem in an unsteady manner 

along with the associated instabilities. 

The initial condition for the semi-infinite problem is a flat sheet with a circulation 

distribution given as I' = 2 a f i  where z is the distance from the edge to a point on 

the sheet and u is an arbitrary scaling factor. Pullin describes the position of the sheet 

with the complex function ro(I',t) where t-  is time and I' is the circulation which also 

identifies a particular fluid particle. Based on a dimensional analysis, the solution is 

written in the form 

zo(r, t )  = ( u ~ ) ~ / ~ R ( x )  ( 5 4  

where n(X) = ((A) + iq (X )  is the non-dimensional sheet shape and X is the similarity 
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parameter, 

Pullin solves for the sheet shape function n(A) numerically using an iterative method 

which yields a similarity solution for the roll-up. 

He then goes on to write Kaden’s similarity solution in a form consistent with his 

notation as 

0, is the location of the spiral center, and a! and E are arbitrary constants. The values 

of a! and E are determined by matching the numerical results to Equation 5.3 at a point 

in the inner spiral. The values found by Pullin are a! = 0.124 and E = 2.69. 

Pullin’s results are used to find the asymmetric velocity components by numerically 

integrating over the sheet inside the circle R;. For example, the velocity at the central 

vortex filament is found directly by integrating over the inner spiral for both the 2: and y 

C a r t e s i a n  velocity components. The flow external to the circle is determined somewhat 

less directly. An integration is performed over the sheet to yield the streamfunction 

on the circle. From this is subtracted the streamfunction of a point vortex of strength 

equal to that of the sheet yielding the streamfunction of only the asymmetric part. The 

streamfunction in the flowfield is then given as the solution to V2Q = 0 with the value 

on the. circle as the boundary condition. 

Once these solutions have been found, it is necessary to express them in a rotating 

frame of reference since the integrations are performed with the point A on the negative 

axis as shown in Figure 5.3, but its true orientation will vary with the rotation of 

the inner spiral during the roll-up. This is one aspect of the time dependency of the 

problem mentioned earlier. The other is that the sheet inside of point A becomes more 
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symmetric as the roll-up progresses. Therefore, the numerical integrations must be 

performed over a range of stages in the roll-up to determine the time dependency. 

The numerical integration on the inner spiral is performed as follows. The sheet 

inside the circle of radius R; is divided into a number of straight segments, as shown 

in Figure 5.3, which are modelled as individual point vortices for the purposes of this 

integration. Associated with each point vortex i is a streamfunction and velocity com- 

ponents given by 

v:; = 0 (5.7) 

where the primes indicate dimensional quantities, IC: is the strength of the filament, R; 

is the radius of the circle enclosing the spiral, and r' is the distance from the filament 

to the point where the integration is performed. The strength, n:, is obtained from 

Pullin's similarity parameter as 

= r;, - r:, (5.8) 

where I':, and I':, are the values of the circulation at the end points of sheet segment i .  

Then from Equations 5.2 and 5.4 

which when substituted into Equations 5.5, 5.6, and 5.7 yields the contribution of seg- 

ment i to the non-dimensional streamfunction, 9, 

and to the non-dimensional velocity components 
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v,; = 0 

The velocity components are rotated to yield the non-dimensional 

(Z, i )  system 
-113 -l/S 

7 .  - 'il Ye - Y i  - $1 ui = - 
217r r 

(5.12) 

components in the 

(5.13) 

(5.14) 

where r = r'/& and is expressed in Pullin's non-dimensional coordinates as 

(5.15) 

In this expression, the subscript i refers to the ith segment of the sheet and the subscript 

c refers the the location of the point a t  which the streamfunction or velocity is calculated. 

ti and qi are  obtained from Equation 5.3 as 

(5.16) 

(5.17) 

where (, and I), are the positions of the spiral center and Ti is the value of r at the 

center of segment i. 

In the numerical integration, each sheet segment, i ,  is chosen such that it subtends 

an angle A8 along the sheet. The values of ri, Til ,  and rj:, are then obtained by noting 

from Equation 5.3 that r is proportional to the angle i, in fact, AT = 2na2A8. 

The radius of the circle, R;, is constant and is given by R; = R(at)2/3 where 

R is the non-dimensional radius at time t .  In an actual roll-up calculation, this may 

be evaluated once at time to when the simulation begins where & is given by & = 

d(€o - €,)'+ (tlo - I),)'. t o  and I)O are the positions of the edge of the inner spiral 

sheet at time t o  which are obtained from Equations 5.16 and 5.17 with TO = 0.24, the 

value at the bottom of the spiral. 
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Equation 5.10 is used to calculate the contribution to the streamfunction at a point 

on the circle R; due to one segment of the spiral and Equations 5.13 and 5.14 to 

calculate the velocity at the spiral center. The total effect due to  the spiral is obtained 

by integrating over the entire sheet inside the circle. However, since the sheet is infinitely 

long, the calculations are ended as soon as the solution converges. The entire numerical 

integration over the inner spiral is written 

(5.18) 

(5.19) 

(5.20) 

The dependency of the problem on time becomes apparent at this point. The limits 

on the integration of Equations 5.18 through 5.20 are from the outer edge of the sheet, 

r = r ~ ,  to the center of the spiral, 7 --.) 00. As time advances and the roll-up progresses 

the value of r~ changes since TA = a4t/r1 and is constant. To determine the effect 

of increasing time (and symmetry) the calculations of Equations 5.18 through 5.20 are 

repeated over a range of values of r ~ ,  from the smallest expected to a very large value 

to determine the asymptotic behavior. 

The resulting calculations for the non-dimensional velocity components at the central 

tip filament are found to very closely fit the forms 
. .  

G = -0.000332r~2.s83 (5.21) 

C = -0.004885~;~*~~~ (5.22) 

where (2, t) is the rotating coordinate system fixed to the sheet center. The dimensional 

components in the usual Cartesian coordinate system are obtained by rotating Equations 
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5.21 and 5.22 through the angle a r o t  and multiplying by (a't)1/3/Rj4 

(5.23) 

(5.24) 

The angle arot is dependent on time and is the angle through which the (Z,G) coordinate 

system must be rotated in order to match the point A on the inner spiral to the point 

A on the actual sheet (i.e., the edge of the actual sheet). This is illustrated in Figure 

5.4. The sheet edge position A is determined during the roll-up calculations. 

The flowfield external to the circle is handled somewhat differently. Equation 5.18 

is used to compute the asymmetric component of the streamfunction on the boundary 

of circle l?:, denoted as \Ilbou&ty. The flow exterior to the circle is then obtained as 

the solution to V2Q = 0 with \Ilboun&ry as the boundary condition. The solution may 

be written as 
sin ne' cos ne' 00 

9 = n=l b n ( r A ) T  4- Dn(rA) 7 1  (5.25) 

where Bn and Dn are written to emphasize their dependence on time. As shown in 

Figure 5.4 is measured from the negative p axis in the rotating (Z,G) coordinate 

system. Bn(7A) and Dn(7A) are given by 

. .  

where *bou&ry is also dependent on r ~ .  Bn(rA) and Dn(rA) are found to be fit closely 

by the forms 

where 
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n 

1 

2 

3 

4 

5 

6 

7 

bn 

0.005301 

0.001310 

0.000575 

0.000319 

0.000202 

0.0001 39 

0.000100 

mn 

-1.386 

-1.363 

-1.345 

-1.330 

-1.316 

-1.301 

-1.283 

dn 1, 

0.0010070 -2.373 

0.0001550 -2.282 

0.0000657 -2.409 

0.0000312 -2.361 

0.0000157 -2.173 

0 .oooo 102 -2.22 1 

0.00001 15 -2.807 

are the first seven sets of coefficients. 

Although the numerical computations yield decimal numbers for the time behavior 

of the spiral solution, in reality these should be rational numbers. Based on the results 

obtained, possible rational exponents are -4/3 for the mn and -7/3 for the 1,. 

The non-dimensional velocity components in the flow field are then given by 

(5.26) 

(5.27) 

where (7, i) is the coordinate system fixed to the center of the spiral as shown in Figure 

5.4. The dimensional components in the usual Cartesian coordinate system are given by 

(5.28) 

(5.29) 

where 8, = 8 - 7r/2 + arot and is taken positive in the usual sense with 8,  = 0 on the 

positive z axis. 
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5.1.3 Initial Representation of the Sheet 

The Pullin solution may also be used as an initial condition so that the numerical 

simulation may be started at some time, t = t o ,  where t o  > 0. The outer most portion 

of the sheet will have already rolled up into an infinitely long logarithmic spiral which 

can be approximated using the Pullin model described in the previous section. This 

approach eliminates the problem of attempting to model the initial motion of the tip 

singularity in a discrete manner with a series of vortex elements. 

The state of the sheet at time t = to  may be obtained from Pullin’s results as follows. 

The outer portion of the sheet will have assumed the configuration shown in Figure 5.5. 

At time to, point A0 has convected to position A on the curved sheet and the location of 

the spiral center is at 00, bo relative to the original location of the sheet edge. Pullin’s 

results yield the location as a0 = 0 .308(a t0 )~ /~  and bo = 0.489(at0)~/’ where to  is the 

initial time and a is a measure of the total sheet strength as given in Section 5.1.2 for 

the parabolically loaded sheet as I’ = 2 a G .  

The approach taken here is to start the simulation at time t = to  with the outer 

portion of the sheet from the edge to point Ao, and its associated circulation, represented 

as a single vortex filament and higher order components centered at location ao, bo. The 

radius of the core section of this circular filament is determined by preserving the total 

kinetic energy of the system. Also, for simplicity, the inner portion of the sheet at 

time t = to,  Le., from point A to the central axis, is modelled as a flat sheet that 

is. stretched uniformly from point A to point Bo. This stretching procedure does not 

precisely conserve the fluid impulse but for the small values of to used in the simulations 

the impulse is nevertheless correct typically to within less than 1%. 
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5.1.4 Tip Ring Amalgamation 

As the sheet rolls up and the individual layers of the spiral come close together 

there will be large errors in the induced velocity calculated at the vortex elements. 

As a concentrated vortex is already present at the center of the spiral from the initial 

condition it is natural to use core amalgamation to lump together the inner portion of 

the spiral as the layers move too close together. 

Core amalgamation may be accomplished in between time steps by requiring the 

before amalgamation and after amalgamation systems to be equivalent. The strength 

and location of the resulting single ring may be determined by conserving the circulation 

and centroid of vorticity of the group. 

It is also necessary for the self-induced velocity of the centroid of the group and that 

of the amalgamated single ring to be equal. Bernardinis, Graham, and Parker [S] have 

expressed doubts about the amalgamation process when applied to three-dimensional 

flows unless this velocity can be maintained through the amalgamation process. In 

their work with vortex rings they do not explicitly require the velocities to be equal 

but instead determine the core radius (and hence the self-induced velocity) based on 

the conservation of the volume of the rotational fluid of the group of vortices. The 

approach taken here for the determination of the core radius is to conserve the kinetic 

energy of the flow across the amalgamation by adjusting the core radius of the resulting 

tip ring. In this way the three primary invarients of the flow, circulation, impulse, and 

kinetic energy are conserved throughout the simulation. The amalgamation process is 

summarized in Figure 5.6. 

Limiting the spiral portion of the sheet to a fixed number of loops is the amalga- 

mation criteria used here. Another method would be to check for a minimum distance 

between loops since this is the reason that amalgamation is used, but it is assumed that 
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simply counting loops provides a good enough approximation. 

Another reason for limiting the number of loops is in consideration of the total 

length of the sheet. As more loops are allowed to form around the tip vortex ring 

core the sheet becomes excessively long requiring very many discrete vortex elements 

for sufficient resolution. The number of vortex elements, in turn, is limited by the 

computational resources available. 

5.2 Rediscretization to Alleviate Velocity Errors 

5.2.1 Motivation for Rediscretization 

Fink and Soh [7], [8] show that the error in calculating the induced velocity at a 

point on a two-dimensional vortex sheet can become arbitrarily large if the point is not 

in the center of the segment. This is the result of the neglect of a logarithmic term 

in the solution of the Cauchy principle value integral representing the velocity. When 

the vortex is centered in the segment, the logarithmic term vanishes. As the vortex 

approaches the edges of the segment, however, the contribution of the logarithmic term 

becomes large and cannot be neglected. Even if the sheet is initially discretized into 

equal length segments, the ensueing stretching and deformation of the sheet results in 

their movement off center. 

Finkand Soh eliminate this error by rediscretizing the vortex sheet at every time 

step and achieve good results. This involves constructing a new smooth sheet geometry 

through the convected positions of the point vortices using a curve fitting procedure 

and then counting off equally spaced intervals along the new sheet to form the (equal 

sized) sheet segments for the next time step, The point vortices are then put at the 

centers of each segment. 
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Moore [12] examines this rediscretization technique as applied to the case of a uni- 

form circular vortex sheet in twodimensions which has a known solution. For this flow, 

where there is no sheet stretching, the major concern is Kelvin-Helmholtz instability. 

Moore shows that the straightforward point vortex model experiences a discrete form of 

Kelvin-Helmholtz instability where the observed growth rate is that of the most unsta- 

ble mode. He then shows that the rediscretization technique of Fink and Soh acts as a 

smoothing mechanism which reduces the instability and delays the onset of the chaotic 

motion (but does not eliminate it). 

While these remarks on the error in the velocity are strictly applicable only to the 

two-dimensional sheet, it is assumed that the same general situation holds true for the 

three-dimensional axisymmetric sheets being considered here. The axisymmetric vortex 

segments behave rocally as though they are two-dimensional, therefore, they should 

experience similar errors. To eliminate this error the rediscretization approach will be 

used for the three-dimensional axisymmetric sheet also. 

5.2.2 Application to the Discrete Axisymmetric Model 

Following Fink and Soh, after each time step a continuous model of the sheet is 

reconstructed by passing a smooth curve through all of the vortex elements in sequence 

along a cut through the sheet in a plane passing through the central axis. Simulta- 

neously, a functional representation of the circulation distribution along the sheet is 

obtained-. Given these, the total arc length is determined from the center to the outer 

edge of the sheet which when divided by the number of vortex elements yields a new 

sheet segment length. Vortex elements are then placed at the centers of each of the sheet 

segments and their strengths are determined from the sheet strengh distribution. If the 

element is a vortex filament then it is simply placed on the curve in the center of the 

segment. If vortex panels are being used then the panel center is positioned to coincide 
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with the point on the curve in 

panel is set such that the panel 

the center of the segment and the orientation of the 

is tangent to the curve at the panel center. The panel 

width is set equal to the arc length of the segment. Observe that this method does not 

yield a model of the sheet where the panel edges are joined into a continuous structure 

except in the limit as the panel width approaches zero. The sheet is not considered to 

be composed of panels but, rather, the flat panels are used as approximations to the 

smoothly curved sheet segments for purposes of velocity calculation. Since the panel 

velocity is calculated at its center, which lies on the sheet, this method yields velocities 

on the sheet itself. 

Once the sheet has formed a roll-up of about one and one half loops a different 

rediscretization technique is used in the spiral region. Rather than counting off equal 

length pieces of arc for the new segments, the segment lengths are chosen such that the 

individual vortex elements will line up with each other on successive layers in the radial 

direction. This is done in an attempt to minimize the effect of the artificial singularities 

associated with each of the vortex elements. By arranging the elements in this manner, 

the effect of the singularities nearly cancels and the segment lengths of neighboring 

elements will still be very nearly equal. The remaining sheet segments in the flat part 

of the sheet are rediscretized with equal spacing as described before. 

The geometry and circulation of each portion of the sheet between any two vortex 

filaments or panel centers is described parametrically by an arc length parameter. For 

each ring interval i ,  the sheet is modelled as 
. .  

ri = ri(s) (5.30) 

(5.31) 

(5.32) 

where ri and zi represent the radial and axial components of geometry respectively, I?i 

is the circulation, and s is the arc length along the sheet along the cut starting from 

54 



the central axis. 

The functions for r i ,  zi, and I'i are a type of cubic spline that have the desirable 

property of bounding the interpolated curve which reduces the appearance of wiggles 

seen in other types of splines. The spline is constructed for a sheet segment between 

vortex elements i and i + 1 as shown in Figure 5.7. The first step is to construct a 

parabola, gi(s), through points i - 2 ,  i -  1, and i and another parabola, gi+l(s), through 

the points i - 1, i ,  and i + 1. The interpolated function, f i (s) ,  is then obtained as the 

following linear weighted average of gi(s) and gi+l(s) 

(5.33) 

where si and si+l are the values of arc length at points i and i + 1 respectively. This 

yields a cubic function for- f i  which has a slope at the end points that matches that 

of the two generating parabolas. Repeated over all of the sheet segments, this process 

yields a continuous function from one end of the sheet to the other that has continuous 

finst derivatives and is relatively free of the extraneous curvature seen in some other 

types of splines. 

The only exception to this scheme occurs at the outer edge of the sheet. As shown 

in Figure 5.8, the location of the outer edge of the sheet is not known. The known 

positions are at the vortex rings or panel centers, but the outer most ring or panel 

center is not placed at the outer edge of the sheet, it is a t  or near the middle of the 

final segment. For purposes of rediscretization the outer edge point of the sheet must 

be located. It is found by assuming that the final portion of the sheet has the shape 

of Kaden's spiral, Le., r = & P 2 I 3 ,  where r and 8 are referenced to the position of the 

center of the rolled-up tip vortex ring and & is chosen to match the Kaden spiral to 

the last known point on the sheet. As shown in Figure 5.8, the origin for 8 is taken 

as the horizontal axis through the spiral center and computed such that r ( 8 )  is not 

multivalued. 
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Actual sheet 

Sheet with 
inner spiral model 

. .  
Central vortex filament 
and higher order terms 

Figure 5.1: Inner Spiral Model 
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t = tl 
I -  

t = t 2  

where: 
= portion of sheet modelled by discrete elements 

- - - - -  = portion of sheet replaced by the 'inner spiral model 

Figure 5.2: Time Dependency of the Inner Spiral Model 
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" t  '. 

Figure 5.3: Numerical Integration over the Inner Spiral 

\ 
\ 

model 

Figure 5.4: Rotation of Inner Spiral Model to Match Actual Sheet Orientation 
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-sheet at t = tn 

Sheet at t = t o  

is modelled as: 

tip vortex ring with finite core 
and higher order term 

.. . 

t = O  

A 

Figure 5.5: Initial Representation of Sheet 
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Before 
Amalgamat ion 

After 
Amalgamat ion 

.-. 

nl, ~ 2 ,  and ~t are amalgamated to form IC; 

1. Strength of tip filament found by conserving circulation 

2. Location of tip filament found by conserving impulse 

3. Tip filament core radius found by conserving kinetic energy 

. .  

Figure 5.6: Sheet Edge Filament Amalgamation Procedure 
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f 7 i f 2  

spline for segment i ,  fi(s)  

s = arc length 

f i  = function being splined, either T i t  zi, or I'i 

gi(s) = parabola through points i - 1, i ,  i + 1 

= 00 + Ul(S - Si) + 4 s  - Si)2 

gi+l(S) = parabola through points i ,  i + 1, i + 2 
- - bo + bl(S - Si+l) + bz ( s  - Si+1I2 

Figure 5.7: Cubic Spline for Sheet Rediscretization 
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Final 

Spline 

L-Vortex Rings or Panel Centers 

Figure 5.8: Rediscretization at Outer Sheet Edge 
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Chapter 6 

Application of Discrete Vortex Model 

6.1 Summary of Model 

1. An axisymmetric sheet is modelled as a series of equally spaced concentric vortex 

rings or panels. For vortex rings,’ the core diameter is chosen to be one half of 

the distance between consecutive filaments, this choice of core diameter conserves 

kinetic energy. 

2. The simulation starts at time t = to with the spiral portion of the tip replaced with 

the inner spiral model consisting of an equivalent single vortex filament and higher 

order terms. Strength, location, and core radius of the tip ring are determined from 

conservation of circulation, centroid of vorticity, and kinetic energy respectively. 

A typical non-dimensional value of to is 0.0075. 

3. The induced velocities are calculated using Equations 2.15, 2.16, and the inner 

spiral model of Section 5.1.2 and the positions of the elements are updated using 

a fourth order Runge-Kutta time step method. 

4. After each time step the sheet is rediscretized so that the vortex elements will 
. .  

remain equally spaced or along rays in the spiral region. 

5. Excess spiral loops are amalgamated into the tip ring vortex as they form. Strength, 

location, and core radius of the new tip ring are determined from conservation of 

circulation, centroid of vorticity, and kinetic energy. 
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6.2 Results 

The validity of the method is demonstrated by computing the roll-up of a two- 

dimensional sheet similar to that shed by an elliptically loaded wing. The results are 

compared to the similarity solution given by Kaden for the inner part of the roll-up 

of a semi-infinite sheet. This case is also used to compare and contrast the panel and 

filament models. Both are used to compute the two-dimensional roll-up and the results 

are compared. 

The panel model is then applied to vortex disks of two vorticity distributions, an 

elliptic distribution produced by a disk which translates through a fluid at constant 

speed and then suddenly dissolves, i.e., the three-dimensional analogue of the elliptic 

wing problem, and a distribution more typical of that for a helicopter rotor blade with 

the load increasing towards the tip. 

In all of the results that follow, t ,  I', length, and all velocities have been non- 

dimensionalized by t r e l ,  I'o, b ,  and U,,! respectively, where, t r e f  = b2/I'o, b is the 

half-width of the sheet at time t = 0, I'o is defined in the loading equations that follow, 

and U,,! is the magnitude of the velocity on the sheet at time t = 0. For comparison, it 

is recalled that Pullin's non-dimensional time is given in terms of his similarity variable 

as 7 = = a4tt/rs. 

6.2.1 .Two-Dimensional Model Validation 

The validity of the model may be evaluated by using it to compute the roll-up of a 

two-dimensional vortex sheet with an elliptic circulation distribution 
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which yields a value for the uniform downwash of Uref = I'o/2b and a corresponding 

sheet strength 
-r 

7 = 
where r is the distance along the sheet. This is perhaps the most widely used test case 

for new methods because it is a good approximation to the three-dimensional roll-up of 

an elliptically loaded wing. Additionally, for very small values of time, an exact solution 

is available for the inner part of the spiral region in the form of a similarity solution. 

In the limit, as the center of the spiral is approached, the similarity solution becomes 

exact. Both the two-dimensional panel and filament models of Chapter 2 are used and 

the results are compared. 

Simulation Parameters 

The parameters used in this simulation are as follows: 

Number of panels or filaments: 240 

Portion of sheet edge initially rolled: 2.5% 

Time step method: Runge-Ku tta 

A2wz: 0.003 

Number of time steps: 3000 

Maximum number of loops in spiral: 10 

Initial Model of Sheet 

The initial sheet geometry and sheet strength distribution are shown in Figure 6.1. The 

same initial condition applies to both the panel and the filament models. Two and one 

half percent of the outer portion of the sheet rolled into the tip vortex filament results 
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in a tip filament strength of about 22% of the total sheet strength. The large value is 

the result of the high concentration of vorticity in the outer portion of the sheet. As 

determined using the methods of Section 5.1.3, the location of the tip vortex filament 

is found to be t = 0.987 and z = 0.021 and the corresponding initial time is found to 

be to  = 0.0123. As mentioned earlier, the vortex elements which represent the sheet 

initially lie flat horizontally and are stretched out as indicated in Figure 5.5. The initial 

slight curvature of the sheet is ignored. The corresponding sheet circulation is also 

linearly stretched along with the filaments. 

The initial vertical velocity distribution, u, is shown for the panel and filament 

moodels in Figure 6.2 and the initial horizontal velocity distribution, u, is shown for 

the two models in Figure 6.3. The exact initial condition for the vertical velocity on 

the sheet at.time t = 0 is a uniform downwash from the center of the sheet to the outer 

edge and is equal to -1.0. The horizontal velocity should be zero everywhere except 

at the outer edge where both velocity components are undefined. The velocity profiles 

of Figures 6.2 and 6.3 are not expected to agree exactly with the true initial condition 

at time t = 0 since the initial condition for the numerical simulation is at a short time 

later, i.e., at t = to  after a spiral has formed at the tip. However, t o  being small implies 

that the initial velocity profiles should be very similar to those at t = 0. For both 

panels and filaments the vertical velocity agrees very closely with the expected value of 

-1.0 over most of the sheet. The large values realized at the outer edge are attributed 

to the inability of either the panel or the filament models to accurately compute the 

induced velocity in a region where the vorticity gradients are very large, however, the 

panel model shows less error than the filament model. The initial horizontal velocity 

distributions for both panel and filament models are identical from the sheet center to 

the outer edge where the effect of the tip filament becomes apparent. Over most of 

the sheet, the horizontal velocity is zero but at the outer edge it increases sharply in 

the outward sense due to the tip vortex producing great stretching in this region of the 

sheet. 
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Roll-Up Before Amalgamation 

The resulting sheet roll-up computed using the inner spiral model of Section 5.1.2 is 

presented at several times up to the point when the first ten turns of the spiral are 

formed in Figure 6.4 for the panel model and in Figure 6.5 for the filament model. 

Note that in the figures some of the curves have been displaced vertically from their 

true positions in order to separate them for clarity. In general the models yield a very 

smooth roll-up with no sign of instability or other commonly observed chaotic behavior. 

The only noticeable difference between the panel and filament models at this point is 

that the panel model appears to roll-up slightly faster. Ten turns are achieved for the 

panel model at a time o f t  = 0.122 while for the filament model ten turns have not 

formed until t = 0.136. This difference is due to the retarding effect of the concentrated 

vortex at the control point on the neighboring turn. 

An enlargement of the spiral region at the time when ten turns have formed is given 

in Figure 6.6 for the panel model and in Figure 6.7 for the filament model. Aside from 

the slight difference in size due to the difference in time, there is very little observable 

difference between the models. The use of the equi-angular rediscretization scheme is 

apparent in the inner part of the spirals but note that the outer most turn is composed 

of segments of equal length rather than equal angles. It was found necessary during the 

course of the calculations to rediscretize the outer turn of the spiral with equal length 

segments because the equi-angular method, together with the rapidly increasing radial 

distance of the sheet trom the spiral center, resulted in sheet segments that were too 

unevenly spaced on this final turn. Unequal spacing of the vortex elements has been 

established as one of the causes of the breakdown in these methods due to the associated 

large errors in the velocity calculations. Therefore the equi-angular rediscretizaton could 

only be used on the inner part of the spiral where the distance of the sheet from the 

spiral center increases only slowly. 

. .  
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The sheet strength distributions plotted against arc length, s, measured from the 

sheet center are presented in Figures 6.8 for the panel model and in Figure 6.9 for 

the filament model. The stretching of the outer edge of the sheet is reflected in the 

sudden reduction in sheet strength as the edge is approached. In comparing panels and 

filaments, the results are very similar with, perhaps, the sheet strength distribution for 

the panel model slightly smoother near the end of the sheet. It is not clear if the wiggles 

are real or if they are due to numerical inaccuracy. Some waviness is expected in that 

the spiral is immersed in a strain field imposed by the remainder of the sheet. 

The vertical velocity of the vortex filament which represents the spiral center, v)tip, 

is given in Figure 6.10 for the panel model and in Figure 6.11 for the filament model 

along with the value obtained from Pullin’s results for the semi-infinite sheet. Pullin 

presents the position of the tip in terms of the similarity variable from which the tip 

vertical velocity may be obtained as 

d 
dt 

vtip = - [0.489(~t)~/’] - 1.0 

where the constant -1.0 is included to yield the velocity of the tip in the absolute 

reference frame used in the simulations and u is the sheet strength constant presented 

in Section 5.1.2. For the two-dimensional elliptically loaded sheet, a = ro/fi. 

The oscillations between times t = t o  and t = 0.065 are not believed to be real but 

only a result of the inexact nature of the initial representation of the sheet. They are 

caused by the uneven distribution of vorticity around the tip filament as the sheet rolls 

up around it during the first few turns of the motion. The slightly faster roll-up of 

the panel model is reflected in the higher frequency of the oscillations in Figure 6.10 as 

compared to  Figure 6.11. 

The inner spiral model introduced in Section 5.1.2 could conceivably remove all of 

the oscillation but apparently the inexact nature of the initial representation of the 

sheet is enough to introduce the errors realized here. The model acts to considerably 
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lessen the amplitude of the oscillations but does not completely eliminate them. The 

effect of the model on the oscillations may be evaluated by comparing the simulation 

with the model in place (Le., Figure 6.10) to the same simulation without the model. 

The tip filament vertical velocity for the first few turns of the roll-up using panels is 

compared with and without the inner spiral model in Figure 6.12. The effect of the 

model is to reduce the amplitude of the oscillations by 50% or more and to increase the 

rate of roll-up, as is seen indirectly from the frequency of the oscillations. 

The distribution of circulation as a function of radius from the spiral center is eval- 

uated by summing the strengths of the vortex elements enclosed by circles of increasing 

radius centered at the tip vortex filament. This process is illustrated in Figure 6.13. As 
the radius increases, eventually all of the vortex elements of the spiral are included by 

the radius i. Further increase includes the unrolled part of the sheet as well. 

The radial distribution of circulation for the discrete models is presented along with 

Pullin’s result in Figure 6.14 for the panel model and in Figure 6.15 for the filament 

model. Consistent with the result for the semi-infinite sheet for small values of time, the 

circulation, once rolled up, remains at a constant radius from the spiral center. This is 

indicated by the clustering of lines for different values of time. Pullin’s results yield a 

value of circulation about 5% smaller than those obtained here at the smaller values of 

radius, Le., both discrete models predict that the circulation distribution for the elliptic 

loading is slightly more concentrated in the inner part of the spiral than that for the 

semi-infinite sheet. At larger values of i the nearly parallel curves correspond to the 

part of the sheet which has not yet become rolled up. Since a point vortex is used to 

represent the center of the spiral, the curve of r ( i )  begins at a non-zero value and is 

constant until the turns of the spiral are encountered. 

The total circulation contained in the spiral region, rap, (somewhat arbitrarily de- 

fined as where the sheet first becomes vertical) is presented in Figure 6.16 for the panel 
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model and in Figure 6.17 for the filament model along with Pullin’s results. The panel 

and filament models yield very similar results and both are very close to Pullin’s result. 

This is to be expected since for small values of time when only the outermost portion 

of the sheet is rolled up, the loading for the semi-infinite sheet and the finite sheet are 

similar. By the time ten turns have formed, approximately 42% of the total circulation 

is contained in the spiral 

The distance of the sheet from the spiral center plotted against angle, + ( O ) ,  is given 

in Figure 6.18 for the panel model and in Figure 6.19 for the filament model at the 

time just before the first amalgamation. Also given is Kaden’s similarity solution using 

Pullin’s constants for the inner part of the spiral. The distance for the panel model is 

everywhere smaller than the values obtained from Pullin’s results while for the filament 

model the opposite is true. The small oscillations seen in both the panel and filament 

results indicate the slight ellipticity of the sheet due to the imposed strain field. 

Roll-Up After Amalgamation 

The roll-up continues after the time when ten turns have formed to about time t = 8.5 

with the amalgamation procedure being used to limit the spiral to  ten turns. Ten turns 

was selected as the cut-off for the spiral after several trial runs indicated that errors 

would be introduced into the solution (detected by tracking the total fluid impulse) 

after this point if the turns were allowed to continue to accumulate. This is thought 

to be due to lack of resolution and the close spacing of the inner layers of the spiral. 

However, in some cases, when the roll-up was continued without any amalgamation and 

without regard for the errors, spirals of considerably more turns were obtained before 

the sheet crossed over on itself. In addition, the panel model would allow for, typically, 

one or two more turns than the filament model. 

The sheet geometry for the panel model is presented in Figures 6.20 and 6.22 and 
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for the filament model in Figure 6.21 and 6.23 for a series of times between t = 1.09 

and t = 8.5, i.e, between the first amalgamation and the end of the simulation. The 

corresponding sheet strength distributions are given in Figure 6.24 for the panel model 

and in Figure 6.25 for the filament model. The roll-up continues smoothly, still with no 

sign of Kelvin-Helmholtz instability. At time about time t = 6.8 the spiral center (not 

the centroid of vorticity) has moved its greatest distance inward to t = 0.778 which is 

very near the expected asymptotic value of t = 0.785. The effect of the amalgamation is 

clear from the figures as the inner parts of the spiral gradually disappear, being absorbed 

by the tip filament. The sheet strength distributions have more of the small bumps seen 

earlier indicating the presence of the strain field due to the rest of the sheet. At this 

later stage in the roll-up, there is very little difference in the results between the panel 

and the filament models although there are some slight differences in the sheet strength 

distributions. 

The vertical velocity of the tip filament has approached the correct asymptotic value 

for this flow of v = -0.205 at about time t = 1.3 as shown in Figure 6.26 for the panel 

model and in Figure 6.27 for the filament model. The total circulation contained in the 

spiral is shown in Figures 6.28 and 6.29 against time for the two cases. Also shown is 

Pullin’s result for the semi-infinite sheet. By the end of the simulation, about 96% of 

the circulation has become rolled up, as the spiral has been defined. 

The radial distribution of circulation in the spiral is presented in Figure 6.30 for 

panels and in Figure 6.31 for filaments along with Pullin’s result. For larger values of 

time, in contradiction to the results observed for small values of time, the circulation 

distribution is not completely constant. As the sheet rolls up, the vorticity in the spiral 

layers is slowly drawn in towards the center increasing the concentration of vorticity 

in the spiral core. This indicates that kinetic energy is not being conserved in the 

calculation and this was confirmed by numerical calculations. 
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A measure of the accuracy of the numerical simulation may be obtained by checking 

for the constancy of the total fluid impulse and kinetic energy. Since these are invarients, 

any deviation indicates numerical errors. For the panel model, the impulse increased 

by about 0.19% over the duration of the simulation or by about 0.000063% per time 

step. The corresponding values for the filament model are an increase of about 0.25% 

for the entire simulation and 0.000083% per time step indicating the greater accuracy 

of the panel model. A detailed analysis of the simulations revealed that about half 

of the increase in impulse is due to inaccuracy in time stepping and the other half is 

due to the rediscretization procedure. As was observed in the discussion on the radial 

distribution of circulation, kinetic energy was not conserved as well as impulse. As 
shown by Batchelor [2], the part of the kinetic energy which depends on the positions 

of the vortices is given by 

where the summation is over all combinations of i and j except when i = j .  Over the 

course of the simulation to t = 8.5 the kinetic energy decreased by about 6.0% for each 

of the discrete models, or by about 0.002% per time step. 

Validity of Model 

These results indicate that the model performs acceptably, both with panels and fila- 

ments, allowing for the roll-up of a good number of turns in the spiral and over a long 

period of time. The small change in impulse indicates that the time stepping and redis- 

cretization procedures perform reasonably well although there is some error, noticeably 

in the kinetic energy which should be corrected in future work. The agreement with 

Pullin's results for the semi-infinite sheet is in most cases good with the exception of 

the initial motion of the spiral center. Perhaps a better initial definition of the unrolled 

part of the sheet would eliminate the oscillations noted in Figures 6.10 and 6.11 for 
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the vertical velocity of the spiral center. The results show that the model can be used 

to discern the slight ellipticity in the sheet shape due to the imposed strain field and 

to give useful information on the rate of roll-up and circulation distribution for other 

vortex sheets undergoing roll-up. 

Comparison of Panels to Filaments 

The primary advantage of panels over filaments is to moderately increase the accuracy 

of the calculations and to slightly increase the length of time that the spiral can roll-up, 

i.e., the number of turns that can form around the core. In trial runs, typically one 

or two additional turns could form in the spiral with panels before the sheet would 

cross over on itself. These benefits are attributed to the more accurate velocity calcu- 

lation provided by the panel formulas, especially when the panels approach each other 

closely. However, because the distance between the spiral turns decreases rapidly as the 

center of the spiral is approached, the improvement seen with panels is small in terms 

of the number of additional turns that can form. In addition, some of the potential 

improvement of panels over filaments is not realized because of the sheet segment line 

up process that ia used in the rediscretization procedure (Section 5.2.2). The line up 

feature eliminates much of the difficulty with the singularities associated with the vortex 

filaments because of cancellation due to the symmetry which is introduced. Therefore 

the potential advantage of using panels is not fully realized. 

Axisymmetric Configurations 

The following calculations are performed on axisymmetric vortex sheets. The panel 

model is applied to vortex disks of two vorticity distributions, an elliptic distribution 

produced by a disk which translates through a fluid at constant speed and then sud- 

denly dissolves, i.e., the three-dimensional analogue of the elliptic wing problem, and a 
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distribution more typical of that for a helicopter rotor blade with the load increasing 

towards the tip. 

6.2.2 Elliptic Loading Case 

The vortex panel model is used to compute the roll-up of a circular disk of vorticity 

with an elliptic circulation distribution. This is a convenient test case for two reasons. 

First, it is the axisymmetric analogy of the frequently studied two-dimensional elliptic 

wake that was discussed in the previous section. Second, some features of the final 

rolled-up geometry are known. As described in Section 5.1, the edge of the vortex sheet 

is modelled as a single vortex ring of uniform vorticity which will eventually acquire all 

of the vorticity in the sheet due to the amalgamation process. The final characteristics 

of the ring may be determined by equating the strength, impulse, and kinetic energy 

of the ring to those of the initial disk as shown by Taylor (221. This, of course, is not 

intended to imply that a single vortex ring of uniform vorticity is the correct final state 

of the roll-up process. Taylor finds that for the disk of elliptic loading with radius b, 

translating at a speed V,,t, the corresponding vortex ring would have a radius of 0.816b 

and a translation velocity of 0.436U,,f. These values should provide a useful check 

towards the asymptotic limit of the simulation. 

Simulation Parameters 

. .  

The parameters used in this simulation are as follows: 

Number of panels: 

Portion of sheet edge initially rolled: 

Time step method: 

Azma2: 
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2.5% 

Runge-Ku t ta 
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Number of time steps: 

Maximum number of loops in spiral: 

1100 

10 

Initial Model of Sheet 

The initial configuration of the sheet is that which would be obtained from a circular 

disk translating normally to its axis which suddenly dissolves leaving a circular vortex 

sheet. The resulting circulation distribution is the same as that for the previous two- 

dimensional case 

r = rod- 
which yields a value for the uniform downwash of 'U,,, = rro/4b. The vorticity distri- 

bution across the sheet, obtained frpm the circulation as 

-r 
= . 

is illustrated in Figure 6.32 along with the initial positions of the vortex panel centers. 

Again, the two-dimensional tip model is used to define the initial conditions for the 

axisymmetric roll-up since for small values of time the axisymmetric sheet edge behaves 

similarly to the two-dimensional sheet. As for the two-dimensional case, the initial 

conditions yield an equivalent initial time of to = 0.0123 and a tip filament containing 

22% of the total strength of the sheet. The location of the tip vortex filament is t = 0.987 

and z = 0.021 above the flat part of the sheet. The corresponding initial axial and radial 

velocity distributions, v and u, are given in Figure 6.33. 

Roll-Up Before Amalgamation 

The sheet roll-up computed by the vortex panel model prior to the point when 10 turns 

have formed in the spiral is presented in Figure 6.34 for times t = 0.039, 0.077, and 
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0.126. The sheet has formed 10 turns around the core at time t = 

point the amalgamation process begins. As for the two-dimensional 

0.126 at which 

case, the sheet 

rolls up very smoothly exhibiting none of the typical chaotic behavior discussed earlier. 

A detailed view of the spiral region at time t = 0.126 is given in Figure 6.35. Com- 

parison with Figure 6.6 reveals very little qualitative difference in the roll-up between 

the two-dimensional and axisymmetric sheets at this early stage. Note that the non- 

dimensionalization used allows for direct comparison between the two-dimensional and 

axisymmetric results in the non-dimensional time variable t .  

The corresponding sheet strength distributions are given in Figure 6.36. As for the 

geometry, a comparison with the two-dimensional results show no notable differences. 

It is interesting to note the sharply defined location of the maximum sheet strength. 

The sheet inboard of this point shows .very little stretching while outboard the sheet is 

stretched by a great amount due to the proximity of the spiral. The distance of this 

point from the edge of the sheet is found to vary approximately as fi. 

The axial velocity of the tip vortex ring is found to experience the same slight oscil- 

lations during the time when the first few turns are forming as did the two-dimensional 

sheet, presumably for the same reasons. As can be seen in Figure 6.37 the oscillations 

subside after the first 3 or 4 loops but then reappear at time t = 0.095. The cause of 

the second set of oscillations is unknown, but as will be seen, they die out quickly. 

The distribution of circulation within the spiral region during this period is presented 

in Figure 6.38 along with Pullin’s result for the semi-infinite sheet. The constancy of 

the distribution with time is less for the axisymmetric case than it was for the two- 

dimensional sheet. At least part of this is due to the slightly irregular motion of the 

tip vortex filament since the distance plotted in the figure is measured from the tip. As 

for the two-dimensional case, Pullin’s results indicate a slightly less concentrated spiral 

core than that obtained here for the axisymmetric sheet. 
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The total circulation in the spiral region as a function of time is presented in Figure 

6.39 along with Pullin’s results. The spiral region is defined to start where the sheet 

first becomes vertical. For the initial part of the roll-up, the agreement is very close 

between Pullin’s results and the axisy m e t r i c  discrete model indicating that the initial 

roll-up is very nearly two-dimensional. 

The distance of the sheet from the spiral center, i, as a function of the angular 

position 8 at time t = 0.126 is given in Figure 6.40 along with Pullin’s results applied 

to Kaden’s spiral. The small oscillations of the numerical results about the Pullin value 

indicate a slight ellipticity in the sheet shape. This is assumed to be caused by the strain 

field imposed on the spiral from the rest of the sheet. The sheet strength distribution 

as a function of 8 is given in Figure 6.41 at time t = 0.126. 

Roll-Up After Amalgamation 

The roll-up calculations are continued past time t = 0.126 by using the amalgamation 

procedure to limit the number of turns in the spiral to 10. As for the two-dimensional 

case, 10 turns was selected as a compromise between achieving good resolution in the 

spiral and suffering from numerical inaccuracy due to the vortex elements approaching 

each other too closely in the inner turns. The sheet geometry and strength distributions 

are presented in Figures 6.42 and 6.43 respectively for times t = 0.32, 0.65, and 1.52 

when the calculation was stopped. The results are characterized by smooth roll-ups with 

no chaotic behavior. A feature of the axisymmetric roll-up that is not present in the 

two-dimensional case is the development of the asymmetry in the spiral which becomes 

apparent by time t = 1.52. The spiral has taken on a distinctly lopsided appearance 

with the outer most turn expanding inward and upward. Examination of the sheet 

strength distributions reveals the development of a local concentration of circulation in 

that part of the sheet. This is undoubtedly a function of the axisymmetric nature of 
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the sheet since it is not present at all in the two-dimensional case. 

The axial velocity of the tip ring, vtip, is shown in Figure 6.44 along with the 

asymptotic value given by Taylor of v = -0.436. After the previously mentioned second 

set of oscillations dies out, the asymptotic value is approximately reached at time t = 

1.02. At this point, about 73% of the circulation has been rolled into the spiral as can 

be seen in Figure 6.45, where the spiral circulation is plotted against time. By the end 

of the simulation at time t = 1.52, about 80% of the circulation has been absorbed by 

the spiral. 

The circulation distribution in the spiral as a function of radius is presented in 

Figure 6.46. The lack of symmetry in the spiral at large values of time is responsible for 

the jagged appearance of the curves. However, the inner turns of the spiral are more 

uniform and show a similar concentration of vorticity as time increases as was seen for 

the two-dimensional case. 

The distance of the sheet from the spiral center, i, and the sheet strength distri- 

bution, 7, aa functions of 8 are presented in Figures 6.47 and 6.48 respectively. The 

oscillations in the plot of i ( 8 )  are much larger compared to the earlier time indicating 

that the spiral turns are becoming more elliptic, especially the outermost turns. 

The fluid impulse is seen to vary by about 1% over the duration of the simulation, 

or, about 0.001% per time step. This is about 5 times larger than the error realized in 

the two-dimensional case and is attributed to the approximations made in the derivation 

of the velocity formulas for the vortex panels. 
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6.2.3 Helicopter Loading Case 

Configuration Description 

A vortex disk similar qualitatively to that which would be produced by a single heli- 

copter rotor blade with the load increasing towards the tip is modelled as an example of 

a more complex vorticity distribution. The rotor blade loading and resulting vorticity 

distribution across the sheet are given by 

Note that inboard of r = 0.82, the sheet strength is positive and outboard of r = 0.82 it 

is negative with the total circulation of the sheet equal to zero. In a gross sense, this is 

equivalent to two coplanar vortex rings of equal but opposite strength at different radii. 

As will be been, the resulting sheet motion agrees with this interpretation. 

The nature of the roll-up for this case is fundamentally different from that of the 

elliptic loading case in that there are two regions on the sheet of high vorticity concen- 

tration. The first is at the edge of the sheet as for the elliptic loading and the second 

is inboard at a radius of about r = 0.52. Apparently these differences in sheet strength 

distributions have resulted in some undesirable effects in the roll-up calculations. The 

sheet repeatedly experienced instabilities at the inner point of maximum sheet strength. 

These were characterized by an oscillation in the sheet strength distribution near the 

point of maximum strength with a period of about 9 or 10 panel widths. A similar 

phenominon was observed by Sugioka [21] where the period of oscillation was about 

11 panel widths. It was found that the instability could be delayed significantly by 

replacing the cubic fit of the circulation in the rediscretization procedure with a linear 

function. In addition, increasing the number of vortex panels tends to aggravate the 

problem. For example, using 200 panels to model the sheet results in the sheet becoming 

i 
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unstable before the secondary inner vortex can begin to  form. Since this is one of the 

more interesting features of the flow, it was necessary to reduce the number of panels 

from that for the elliptic loading case to  increase the length of time that a valid roll-up 

could be observed. For this reason, the calculation was limited to  160 panels. Also, 

because of the much greater lengthening of the sheet due to the stretching realized in 

this case, only four spiral loops are allowed to  form around the tip ring in order to 

minimize the total sheet length and maximize the panel density along the sheet. 

Simulation Parameters 

The parameters used in this simulation are as follows: 

Number of panels: 

Portion of sheet edge initially rolled: 

Time step method: 

AX-& 

Number of time steps: 

Maximum number of loops in spiral: 

. ~~~~ 

160 

2.5% 

Runge-Kut ta 

0.003 

1900 

4 

Initial Model of Sheet 

The initial sheet geometry and sheet strength distributions are shown in Figure 6.49. 

Two and one half percent of the outer portion of the sheet accounts for about 55% of the 

negative vorticity leaving the sheet itself to be of mostly positive vorticity. The location 

of the tip ring is determined as for the previous case, by applying Kaden’s solution to the 

outer part of the sheet, although its validity is somewhat more questionable here since 

the helicopter circulation distribution is even further removed from the parabolic one of 
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the semi-infinite sheet than that of the elliptic loading. The radial and axial location of 

the tip vortex ring are the same as for the elliptic case, r = 0.987 and a = 0.021 above 

the plane of the flat part of the sheet which is taken as z = 0 at t = to. The initial time 

is also the same, to = 0.0123. 

The initial axial and radial velocity distributions, u and u, are shown in Figure 

6.50. Although a simple analytic expression for the initial downwash distribution is not 

available in this case, the computed results at least appear as would be expected with 

the interpretation of the sheet mentioned before as two coplanar vortex rings. The inner 

part of the sheet is moving upward and the outer part is moving downward. The initial 

radial velocity of the sheet is very similar to that of the previous case as is expected 

since the properties of the tip ring for the two cases are nearly the same. 

- -  

Sheet Roll-Up 
- 

The sheet geometry for a series of times to t = 3.51 is presented in Figures 6.51 and 

6.52 and the corresponding sheet strength distribution in Figures 6.53 and 6.54. The 

resulting sheet motion yields two distinct regions on the sheet. The outer region shows 

a roll-up very similar to that for the elliptically loaded disk especially up to a time of 

t = 0.66. This is not unexpected in that the sheet strength is very similar for the two 

cases near the edge. Four spiral turns, the maximum, are formed at time t = 0.076 after 

which the amalgamation procedure lumps any additional turns into the tip filament. 

The inner region of the sheet initially shows a smooth upward motion opposite that of 

the outer part of the sheet. This is due to the oppositely signed vorticity in this region. 

As the roll-up progresses, the part of the sheet with the positively signed vorticity 

begins to move into the outer layers of the spiral. This is made evident by the swelling 

of the outer turn starting at time t = 0.66. By the end of the simulation the oppositely 

signed vorticity has caused the outer turn to move away from the spiral considerably, 
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especially in the inboard upper quarter. The amalgamation process resulted in the tip 

vortex filament absorbing about 95% of the negative vorticity in the sheet. 

The most interesting feature of the flow is the development of the secondary con- 

centrated inner vortex structure seen to be forming at a radius of about r = 0.45 and a 

height of z = -0.15 at time t = 1.94. Comparison with the sheet strength distributions 

indicates that the location of the inner vortex corresponds to the very strong maximum 

observed at an arc length of 8 = 0.95. As time increases the maximum becomes more 

and more sharply defined until it consists of only a few of the vortex panels. This 

maximum is a remnant of the original peak in the positive vorticity distribution at time 

t = 0 and occurs at very nearly the same material particle. The position of the material 

particle which was at the peak at time t = 0 is indicated in the sheet strength figures by 

the large solid dot. By the end of the simulation, this particle has moved away from the 

peak by only two OF three panel widths. Although it seems clear that -the inner vortex 

structure would assume the configuration of a double branched spiral if the simulation 

could be run for long enough, it would take a very long time, i.e., the inner and outer 

roll-up procede at very different rates. By the end of the simulation, the inner vortex 

structure has formed about one half of a spiral turn. 

The calculations invariably break down shortly after this point as the sheet crosses 

over itself in the region of the inboard secondary vortex. This is assumed to be caused 

by the very high strength of a few of the panels as is seen in Figure 6.54 at time 

t = 3.51. The very high concentration of vorticity that is forming in the secondary 

vortex. spiral would perhaps be best handled by another concentrated filament as was 

done by Hoeijmakers and Vaastra [9]. 

Examination of the sheet strength at times t = 2.57 and t = 3.51 in Figure 6.54 

reveals the development of a potential instability in the sheet at a point just inboard 

of the sharp maximum coinciding with the inner vortex. The fluctuations of strength, 
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which become larger with time, are characteristic of the instability that has resulted in 

unsucessful runs with larger numbers of panels. However, in this case the disturbance 

grew slowly enough so that the simulation was able to continue to  the point when the 

secondary inboard vortex could develop. 

The axial velocity of the tip filament, vtip, is given in Figure 6.55. The inset in 

the Figure details the motion for early times. Initially the motion is very similar to 

that for the elliptic loading case but for later times the increase in speed is less due to 

the lesser total negative circulation in the spiral. This case shows more of the erratic 

behavior of the tip filament as the first few turns are formed than was seen in the 

elliptic loading case. This may be partly because the inner spiral model is based on a 

parabolic circulation distribution which is  not very accurate away from the sheet edge 

in the helicopter loading case. Therefore for larger values of time the entrainment of 

the increasingly non-parabolic circulation distribution into the spiral is likely to have 

an effect on the inner spiral characteristics which is not accounted for in this model. 

The total circulation of the edge roll-up is shown in Figure 6.56 against time. The 

different nature of the loading for the helicopter case is apparent when comparing this 

Figure against the corresponding one for the elliptic loading case. Initially, the results 

are consistent with Pullin’s for the semi-infinite sheet as they should be considering 

that the sheet edges are similar. However, at time t = 0.83 the circulation in the spiral 

reaches a maximum at which point it contains all of the negative vorticity in the sheet 

and then begins rolling up the positive vorticity resulting in the total spiral strength 

being reduced. The spiral strength is reduced by about 12% from time t = 0.83 to 

t = 3.51 at the end of the simulation due to the addition of the positive vorticity. 
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Figure 6.13: Definition of Radial Circulation Distribution 
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Chapter 7 

Conclusions I 

Vortex sheet motion is an interesting and challenging subject. As an initial value 

problem it is ill-posed as the wavelength of disturbances approaches zero and is generally 

plagued with instabilities. However, it is possible through smoothing techniques to 

calculate the motion and determine useful information at moderate scales about the 

subsequent roll-up. This work was directed at developing a reliable and accurate method 

for calculating the motion of axisymmetric vortex sheets, especially the roll-up at the 

sheet edge. Knowledge of this type of motion is useful in the study and design of aircraft 

of various types including those of fixed and rotary wings. 

I 
~ 

The motion of the vortex sheet was studied in a Lagrangian manner, tracking in- 

dividual material particles on the sheet. Both vortex panels and vortex filaments were 

used to represent the sheet. The material particles at which the velocities are calculated 

are located at the panel centers or at the filaments. A complete set of equations for the 

induced velocity was presented for both panel and filament models. 

A comparison between the Euler and the Runge-Kutta time stepping procedures 

yielded the result that the Runge-Kutta procedure is far more accurate than the Euler 

procedure for equivalent step sizes in vortex motion calculations. Even considering the 

additional computations that must be performed at each time step for the Runge-Kutta 

method it still outperforms the Euler method by many times in vortex calculations. 

The inherent difficulties in the calculation of vortex sheet motion were revealed 

in a straightforward calculation of the motion of an elliptically loaded disk of vorticity. 
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Shortly after starting, the vortex filaments used to model the sheet exhibited the classical 

chaotic behavior. seen by many other investigators. It was determined that inaccurate 

time stepping was not the cause but that a variety of problems associated with the sheet 

itself and the sheet discretization procedure were responsible. 

The largest single cause of the chaotic behavior observed very early in the simulation 

was determined to be due to the inability of a finite number of discrete vortex elements 

to model the singularity at the sheet edge. This was resolved with the introduction of 

a special model of the edge of the sheet. The model replaces the outermost portion of 

the sheet with a single vortex filament of equivalent strength and a number of higher 

order terms which account for the asymmetry of the spiral. 

Another difficulty associated with representing the vortex sheet with a series of 

discrete vortex elements is the error associated with non-uniform element separation. 

As the sheet stretches unevenly, the initially equally spaced vortex elements become 

unevenly spaced which can introduce severe errors in the velocity calculations. The 

solution to this problem was to rediscretize the sheet at every time step to ensure that 

the vortex elements remain equally spaced. 

The validity of the model was tested by computing the roll-up of a two-dimensional 

elliptically loaded sheet. A smooth roll-up was observed for the entire period of the 

simulation indicating that the method appears to have eliminated the primary causes of 

the chaotic motion observed earlier. Comparing the results to those obtained by Pullin 

for the . .  similar semi-infinite sheet demonstrate that the model may be used successfully 

to simulate the roll-up of a vortex sheet, although the motion for very early times shows 

some error in the motion of the spiral center. Additionally, the two-dimensional test 

case was used to compare the panel and filament models. Few differences were observed 

in the results between the panel and filament models. The primary advantage of panels 

over filaments is their increased accuracy resulting in the ability to form more turns in 
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the spiral. However, the line up of the vortex elements in the spiral served to eliminate 

much of the problem of the singularity associated with the vortex filaments and so the 

potential advantage of panels was not fully realized. 

The model was used to calculate the roll-up of two axisymmetric disks, one with an 

elliptic loading and one with a-loading similar to that of a helicopter rotor in hover. 

For the elliptically loaded disk the method yielded a very smooth roll-up with none of 

the instability or chaotic behavior seen in the straightforward case. Fluid impulse was 

conserved to within about 1% indicating that the method is accurate. The helicopter 

loading case initially suffered some instability in the region of the inboard sheet strength 

maximum, but this was largely overcome by replacing the cubic fit of circulation with 

a simpler linear fit. The cubic function had introduced some extraneous curvature into 

the circulation distribution which became magnified by the differencing process used to 

obtain the strengths of the individual panels. The simulation of the helicopter rotor 

wake successfully captured the development of the secondary inboard vortex although 

it was not capable of fully simulating the double branch roll-up past the early stages. 

However, the addition of another isolated vortex at the inboard vortex position would 

likely allow the roll-up to continue. 
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Appendix A 

Vortex Polygon Model 

A.l  Cut-Off Method 

The self-induced velocity of a vortex filament is infinite at any point where the 

curvature is non-zero. A popular method to avoid this problem when attempting to 

calculate the velocity on the curved filament by means of Biot-Savart integration, is to 

remove a section of the filament around the point of calculation from the integration. 

This is commonly known as the cutsff method. As shown in Figure A.l ,  a segment of 

length I ,  is removed from either side of the control point. Bliss [4] has shown that the 

correct self-induced velocity is obtained if the cut-off length satisfies 

4 1 l o g - = - I 0 g 2 + - - A + C  
C 2 

where c is the radius of the equivalent core section of uniform vorticity. A and C are 

constants which are determined by the axial velocity and the distribution of vorticity 

within the core respectively. For no axial velocity, A = 0, and for uniform vorticity, 

C = 1/4 which yields Ze/c = 0.6420. 

A.2 Polygon Model 

The approach considered in this appendix is to model a vortex ring as a vortex 

polygon consisting of N straight sides of equal length. A vortex polygon is constructed 

from a circular vortex ring as illustrated in Figure A.2. The ends of the straight segments 

PRECEDING PAGE BLANK NOT FBMED 
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lie on the ring and the segments themselves lie inside the circular ring. The motion of 

the polygon may be tracked by computing the velocity at the centers of each of the 

segments due to all of the other segments and all of the other polygons. This naturally 

results in a type of cut-off procedure where the cut-off length, I,, is half of the length of 

one of the polygon sides. The objective is to determine the appropriate cut-off length 

in order to model a vortex ring of a given core section radius. 

For a vortex ring of radius R, and strength IC, the self-induced axial velocity is given 

by Lamb [ll] as 

where E = c /R ,  the ratio of core radius to ring radius. Solving for E yields 

B = 8exp [a + V x ]  4nR -' 

The idea is to  numerically evaluate the velocity at the center of one of the straight 

segments by applying the Biot-Savart integral to all of the other segments. The resulting 

velocity is then substituted into equation A.3 to determine an effective E for this cut-off 

length. 

For large values of N (;.e., N > 75), the value obtained is lc/c = 1.387. This is 

considerably larger than the cut-off length determined by Bliss because of the difference 

in the location of the control point. For Bliss the control point is located on the ring 

itself, while for the polygon method, the control point is located on the center of one of 

the segments which is further in towards the center. 
. .  

The implication of this result is that the modelling of a vortex line by a set of straight 

filament sections in which the self-induced velocity of the straight filament section upon 

itself is zero is equivalent to a vortex core of radius c = 1.3871,. 

This result yields a method for determining the number of polygon segments to be 

used in a ring system to model a disk. Consider a circular vortex disk of radius b which 
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is subdivided into a number of equally spaced annuluses. At the center of each annulus 

a vortex polygon is placed having the same strength as the annulus which it represents. 

An effective core radius may be determined for the polygon using a result presented in 

Section 2.3, i.e., c = w/4 where tu is the width of the annulus. If the cut-off length 

is indicated by I ,  and the associated subtended angle by 8 then for large values of N, 
i.e., small values of 8, I ,  may be approximated by l , /R  m x / N  or with e = c / R  and 

l c / c  = 1.387 we get 

(A.4) 
T N = 1.766N~- 
b 

where NR is the number of polygons used to model the disk. This expression yields 

the number of segments to use in each of the polygons from the center ( t / b  = 0) to 

the outer edge ( r /b  = 1). The number of polygon segments increases linearly with the 

distance from the center of the disk with the value at the center equal to zero. Clearly 

this would have to be approximated, but that is acceptable in that the strength of the 

rings in the center is very small so the error should also be small. Also, the number of 

polygon segments increases linearly with the number of polygons. This could represent 

difficulties computationally in that a very large number of polygon sides may be needed 

to model a vorticity disk and achieve good resolution. 
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126 



Appendix B 

Computer Program ROLLUP 

B.l  Description of Program 

All of the results presented in Chapter 6 were calculated by the computer program 

ROLLUP. ROLLUP incorporates the vortex dynamics algorithm presented in Chap- 

ters 2 through 5 including the velocity calculations, the inner spiral model, and the 

rediscretization procedure. The operation of the program is detailed in the series of 

flowcharts presented in Figures B.l through B.5. 

The user supplied input data to program ROLLUP is described in what follows and 

is read by ROLLUP from unit 5. 

IWR = FORTRAN unit number for printed output. 

NRING = Number of vortex elements to be used initially, the actual number 

used may vary according to the value supplied for MINSECT. 

IAXI = 0 for two-dimensional sheet. 

= 1 for axisymmetric sheet. 

INTKOD = 0 for Euler time stepping procedure. 

= 1 for Runge-Kutta time stepping procedure. 

DXMAX = Azmoz from Section 3.1, the maximum distance moved 

by any vortex element within one time step. 

NSTEP = Number of time steps. 

THMAX = The maximum angle that the sheet may roll-up. Any roll-up 
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FRAC 

IWING 

IREDIS 

NU2 

PANEL 

LINEUP 

MINSECT 

MAXSEGS 

greater than THMAX is amalgamated into the tip filament. 

Fraction of the sheet initially rolled (see Section 5.1.3). 

0 for elliptic loading. 

1 for helicopter loading. 

Flag for allowing calls to subroutine REDISC. 

0 for rediscretization not performed. 

1 for rediscretization performed at every time step. 

Frequency of unformatted WRITES to unit 2 for plotting. 

0 for filaments. 

1 for panels. 

0 to inhibit the spiral lineup option. 

1 to use the spiral lineup option. 

The minimum number of sheet segments to be used on each 

turn of the spiral during rediscretization. The total number of 

vortex elements may be increased during execution, if necessary, 

to satisfy MINSECT. This parameter has no effect if LINEUP = 0. 

The maximum number of vortex elements that the program 

is allowed to use when trying to satisfy MINSECT. This 

parameter also has no effect if LINEUP = 0. 

The main program, Figure B.1, acts primarily as a controller, calling the principle 

subroutines inside of the time step loop. First the user supplied data is read from unit 

5. This is followed by the program initialization. All variables are initialized including 

the vortex element positions and strengths and if panels are used, their orientations. 

The properties of the tip vortex filament are defined and the equivalent initial time 

is calculated. Next, all of the initial data, including the initial sheet velocities are 

written to  unit 2. At this point the time step loop is entered where the three primary 
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subroutines, IOVEM, REDISC, and LUMPS are called. At the end of each time step, 

depending on the NU2 parameter, the resulting data is written to unit 2. 

Subroutine MOVEM updates the positions of the vortex elements on the sheet and 

the tip vortex filament. As illustrated in Figure B.2, the first step is to decide be- 

tween the Euler and the Runge-Kutta time step procedures based on the user input. 

If the Euler time step is used then Subroutine VELOCY is called which calculates the 

total induced velocity at every vortex element. This is followed by a call to subrou- 

tine UPDATE which moves the vortex elements according to Equations 3.1 and 3.2. If 

the Runge-Kutta time step has been selected then a similar process is followed except 

that the Runge-Kutta coefficients of Equations 3.3 and 3.4 are calculated by subroutine 

GETK after the velocities are determined by subroutine VELOCY. Then the vortex po- 

sitions are updated according to the Runge-Kutta formulas and the process is repeated 

using the modified vortex positions. The cycle is completed four times to generate the 

four sets of Runge-Kutta coefficients. The final positions are then obtained using the 

four Runge-Kutta coefficients in Equations 3.3 and 3.4. 

. 

Subroutine VELOCY, outlined in Figure B.3, acts as a switch to select from the four 

possible velocity calculation subroutines: axisymmetric panels in subroutine PANVEL, 

axisymmetric filaments in subroutine INDVEL, two-dimensional panels in subroutine 

PANVEL2D, and two-dimensional filaments in subroutine INDVELBD. 

Subroutine REDISC is responsible for rediscretizing the sheet at every time step. As 
illustrated in Figure B.4, the first step is to fit the cubic splines of Equations 5.30 and 

5.31 to the current vortex positions to reconstruct the sheet. F'rom this, the total sheet 

length is calculated. If the lineup option is not being used, a new, constant, panel width 

for the entire sheet is found by dividing the total sheet length by the number of vortex 

elements. Then the sheet is rediscretized by counting off equal length segments along 

the sheet, each of width equal to the new panel width. If the lineup option is being used 
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then first a test is made to determine if there is at least one and one half turns in the 

spiral. If not, then the sheet has not rolled up sufficiently to use the lineup option and 

the sheet is rediscretized with the equal panel width method. If the spiral is sufficiently 

formed then the lineup process continues with the determination of the length of the 

sheet forming the turns of the spiral and the number of segments that can be put on 

each turn. If the MINSECT parameter is not satisfied then the program attempts to  

increase the total number of vortex elements in the sheet until it  is. This, however, is 

subject to the MAXSEGS parameter which is an upper limit to the number of elements 

that may be used. The new vortex element positions are then found in the spiral such 

that the elements line up along rays emanating from the origin. The remaining part of 

the sheet is rediscretized with equally spaced elements. 

l 

At this point, the sheet geometry has been rediscretized and all that remains is to  

determine the strengths of the vortex elements. The vorticity distribution along the 

sheet is integrated from the center of the sheet to the edge to yield the circulation 

distribution. Equation 5.32 is used to spline fit the circulation which is then differenced 

to obtain the individual vortex element strengths. 

Subroutine LUMPS performs the amalgamation procedure as illustrated in Figure 

B.5. First, the extent of the roll-up is calculated by measuring the angle of the final sheet 

panel to  determine if amalgamation is necessary, if not, the subroutine is exited. If the 

sheet has formed enough turns then any element with an angle greater than THMAX 

is considered to be removed from the sheet and amalgamated into the tip filament. 

The circulation, impulse, and kinetic energy of the original sheet are found. The new 

tip filament strength is found from conservation of circulation. The position of the tip 

filament is found from the conservation of impulse and the new core section radius of 

the tip filament is found from the conservation of kinetic energy. Before LUMPS is 

exited, Subroutine REDISC is called to rediscretize the sheet and restore the number 

of vortex elements in the sheet to the value before the amalgamation. 
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MAIN PROGRAM 

[Read user data] 

I 
Initialize all variables, including: 

Vortex element positions, strengths, 

and panel orientation 

Tip vortex strength and position 

Initial time t o  

1 

I Write initial data to disk I 

Enter time stepping loop -. 
- 

t 
CALL MOVEM - update positions 

CALL REDISC - rediscretize sheet 

CALL LUMPS - perform amalgamation 

Write data to disk 

I ISTEP = ISTEP + 1 I 

Figure B.l: Main Program of ROLLUP 
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* 

CALL VELOCY - calculate velocity 

CALL GETK - set R-K coef’s 

CALL UPDATE - update positions for 

next R-K coef. 

? 

I 

done 

compute final positions 

using eqns. 3.3 and 3.4 

CALL VELOCY 

CALL UPDATE 

Q 
Figure B.2: Subroutine MOVEM 
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SUBROUTINE VELOCY 7 

Figure B.3: Subroutine VELOCY 
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SUBROUTINE REDISC 

i 7 -  

~ - 

Increase number of panels if 
necessary to satisfy MINSECT 

I Fit cubic splines between I 

Y 

all points on sheet - 
E G p u t e  length of sheet I 

I 

Compute length of spiral part 
of sheet and number of segments 

I 

in spiral 

. -  ~ 

Get positions of new elements 
on remainder of sheet (equal 
spacing) 

Mark off new equally 
spaced panels along 
the sheet 

Integrate vorticity distribution 

I 

Figure B.4: Subroutine REDISC 

134 



I SUBROUTINE LUMPS I 

7 

Compute circulation, impulse, and 
kinetic energy of vortex system 

.. . 

k I Does outer edge of sheet 
exceed THMAX? '2' 

Determine new tip filament strength 
from conservation of circulation 

Determine new tip filament position 
from conservation of impulse 

Determine new tip filament core 
section radius from conservation 
of kinetic energy 

Call REDISC to rediscretize the 
remaining portion of the sheet 

1 

Figure B.5: Subroutine LUMPS 
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B.2 Program Listing 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 
C 
C 
C 
C 
C 
C 
C 
C 

PROGRAM ROLLUP 
C--This program calculates the trajectories of a group of vortex rings 

or panels which simulate a vorticity disk. The user has the option of 
using Euler or Runge-Kutta time integration. The curve fitting method 
allows for the inclusion of a concentrated tip core which is not part 
of the sheet. At any time step if the sheet rolls up by more than 
a certain amount (THMAX) the excess part of the sheet is 
chopped off and its vortcity lumped into the tip core. In 
doing this, conservation of impulse determines the location 
of the resulting core and conservation of kinetic energy 
determines the core radius. 
This version allows the simulation to start at some time t>O by 
lumping a fraction of the outer portion of the sheet into the 
concentrated tip vortex at the start. 

COMMON /Bl/ RADIUS(O:900) ,HEIGHT(O:900) ,WVEL(0:900) ,WEL(O:900) , 
$ 
$ TIMPUL (0 : 6000) 

GAMMA(0:900) ,CORE(O:900) ,TIME(O:5000) .TENERG(O: 50001, 

COMMON /B2/ NRING,PI,DXMAX,INTKOD,NSMALL,VOLTIP,IAXI 
COMMON /B3/ DMIN(O:900) 
COMMON /TH/ T€ETA(0:900).THMAX,DT(O:900) 
COMMON /BQ/ IWR 
COMMON /PANEL/ IPANEL,DRPAN(O:900) ,DZPAN(O:900) ,WPAN(O:900) 
COMMON /C1/ LINEUP,MAXSEGS,MINSECT 
COMMON /Dl/ DISTMX 
COMMON /SEGS/ AXLSEG(0:gOO) 
COMMON /F1/ ALPLAST,GMTO 
COMMON /ZZ/ ZX0,ZYO 
COMMON /G1/ TIPVAX 
COMMON /E2/ DUMl,DUM2,DUM3,DUM4,DUM5,AE2 
COMMON /NOW/ TIMENOW,BIGRREF 
COMMON /El/ TAUO.BDUM.CDUM.DDUM.TAU2LOOP 
DIMENSION SGAM(0 : 900) ,DDGM(O: 900) 
REAL*4 LAMBDA,K 
CHARACTER PLTITL*80,TITLE*80 

NRING = total number of rings (counting starts at 0) 
NSMALL = number of vortex rings which form the sheet, NSMALLINRING-1 

Index Meaning 

0 Degenerate ring on the central axis of the ring system. 
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C 
C 
C 
C 1 - NSMALL 
C (inclusive) 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

946 

NSMALL 

NRING 

This ring has zero circulation and is used only to 
define the inner boundary of the sheet. 

These are the llrealll vortex rings, i.e., they have non- 
zero circulation. These all lie on the sheet. 

This ring forms the outer boundary of the sheet. 

This is the index of the very last ring. It is the 
concentrated core tip ring. It does not lie on the sheet. 
Initially, this ring has circulation determined by FRAC. 
As the sheet rolls up, the circulation from the outer 
portions, which is chopped o f f ,  gets put into the core. 

PI=ACOS(-l.O) 
TIME (1) PO. 0 

WRITE(6,*)' ENTER UNIT NUMBER FOR PRINTED OUTPUT' 
READ (5, *) IWR 
INEW=O 
WRITE(6.*)' ENTER: NRING, IAXI (IXAXI 0~2-D)' 
READ (6, *INRING, IAXI 
ILOC-1 
WRITE(6,*)' ENTER: (1) FOR RUNGE-KUTTA OR ( 0 )  FOR EULER' 
READ ( 6 ,  * ) INTKOD 
WRITE(6,*)' ENTER: DXMAX, NSTEP (IF DXMAX .LT. 0 ,  DT=DXMAX)' 
READ(6,*)DXMAX,NSTEP 
WRITE(6,*)' ENTER: THMAX (MAX ROLLUP ANGLE BEFORE CUT-OFF)' 
READ (6, * ) THMAX 
WRITE(6,*)' ENTER: FRAC (OUTER PORTION TO BE LUMPED AT START)' 
READ (6, *)FRAC 
WRITE(6,*) ' ENTER: IWING (EXPONENT ON LOADING CURVE 0.2.4) ' 
READ(S,*)IWING 
IF (IWING.NE.O.AND.IWING.NE.2.AND.IWING.NE.4) GO TO 946 
WRITE(6.*)' ENTER (1) FOR REDISCRETIZATION ( 0 )  FOR NONE' 
READ (6, *) IREDIS 
WRITE(6,*)' ENTER: NU2' 
READ ( 6 ,  *) NU2 
NU2A=NU2 
TIMEAB=9.0EZO 
WRITE(6, *) ' ENTER: IPANEL ( 0 )  -RINGS (1) -PANELS' 
READ(6, *) IPANEL 
ISTART=O 
WRITE(6,*)' ENTER: LINEUP 0-NO SEGMENT LINEUP 1-LINEUP' 
READ (5, *)LINEUP 
WRITE(6,*)' ENTER: MINSECT (MIN # OF THETA SECT. IN SPIRAL)' 
READ ( 6 ,  *)MINSECT 
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WRITE(6, *) 
READ(6 ,*)MAXSEGS 
DISTIN=Q . OES 
DISTMX=DISTIN**2 

NSMALLINRING-1 

ENTER: MAXSEGS (MAX # OF RINGS OR PANELS) ’ 

C 

LASTSTEP4 
C 
C--Maximum circulation 
C 

IF (IAXI .Eq. 1) THEN !...3 

ELSE !. . .3 
ENDIF ! . . .3 

GCONST-Q.O/PI 

GCONST=2.0 

C 
C--Compute the initial location of the tip core 
C 

XO=FRAC 
A0-0.620*XO 
B0-0.826*XO 

C 
C--Set core size 
C 

C 
C--Compute radius, height, and ring circulation f o r  constant spacing 
C 

CCORE= (l.O/NSMALL) /4 .0  

CALL SETA 
TIME(1)=((2.O*PI**2)/(9.O*AE2))*XO**(l.6) 
TIMENOW-TIME (1) 
DRs(l.0-FRAC)/NSMALL 
IF (ISTART .Eq. 0) THEN 

ELSE 

ENDIF 
DO 10 1-1 ,NSMALL 
HEIGHT ( I) -0.0 
CORE(1)-CCORE 
RlI(I-l)*DR 
R2=I*DR 
RADIUS(I)=EXPAND*GETRAD(ILOC,Rl,R2) 
IF (IWING .Eq. 0) THEN ! . . . 6  

EXPANDI(1 .O-AO)/(l.O-FRAC) 

EXPAND4.0 

CIRC1~-GCONST*(l.O-S~RT(l.O-R1**2)) 
CIRCZm-GCONST* (l.O-SqRT( 1.0-R2**2) ) 

ELSE ! . . .0 
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CIRClm-GCONST*( 1.0- (Rl**IWING) *SQRT( 1 .O-R1**2)) 
CIRC2~-GCONST*(l.O-(R2**IWING)*SQRT(l.O-R2**2)) 

ENDIF ! . . .8 
GAMMA(I)PCIRCZ-CIRCI 

10 CONTINUE 
C 
C--Initialize the arc length array, AXLSEG(1) is the total arc length 
C to the end of segment I. (Note: segment I is the segment which 
C 
C 

contains ring or panel 1) 

AXLSEG(O)=O.O 
DO 11 I=l,NSMALL-l 

AXLSEG(I)=AXLSEG(I-l) 
s +SqRT( (RADIUS(I+l) -RADIUS(I) )**2 
s +(HEIGHT(I+l)-HEIGHT(I))**2 ) 

11 CONTINUE 
AXLSEG (NSMALL) PAXLSEG (NSMALL- 1) 

$ +SqRT( (RADIUS(NSMALL) -RADIUS(NSMALL-l)) **2 
$ + (HEIGHT (NSMALL) -HEIGHT (NSMALL- 1 ) ) **2) 

C 
C--Initialize special tip vortex (Index=NRING) 
C 

IF (FRAC .Eq. 0.0) THEN !...lo 
C 
C--This section for no circulation in tip vortex initially 
C 

HEIGHT(NRING)=O.O 
RADIUS(NRING)=l.O 
GAMMA(NR1NG)-0.0 
CORE(NR1NG) PO. 0001 
VOLTIP-2.0*PI*PI*RADIUS(NRING)*CORE(NRING)**2 

ELSE !...lo 

IF (IAXI .Eq. 1) THEN !...11 tip parameters for axi-flow 
C 

C 
HEIGHT(NRING)=BO 
REDGS1.0-FRAC 
GAMMA(NRING)=(-GC0NST)- 

RADIUS(NRING)-l.O-AO 
s (-GCONST*(l.O-(REDG**IWING)*SqRT(l.O-REDG**2))) 

C 
C--Now figure total K.E. and get core size 
C 

SUMl=O. 0 
sUM2=0.0 
DO 82 I-1,NRING 
W=RAI)IUS (I) 
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82 
C 

83 

C 

Z=HEIGHT (I) 
DO 82 J=l,NRING 
IF (I .NE. J) THEN !...12 

WP-RADIUS( J) 
ZP-HEIGHT( J) 
Rl=SqRT( (Z-ZP) **2+(w-wp) **2) 
R2=SqRT( (Z-ZP) **2+(w+wP) **2) 
LAMBDA=(RZ-RI) / (R2+R1) 

sUM1=SUMI+GAMMA( I) *GAMMA( J) * (RI+R2) * (K-E)/2 - 0 CALL ELLIP(LAMBDA.K.E) 

ENDIF !...12 
CONTINUE 

IF (IWING .Eq. 0) THEN 1 .  ..13 
TOTKE=4.0/3.0 

ELSE IF (IWING .Eq. 2) THEN !. ..13 
TOTKE-0 .41 

ELSE IF (IWING .EQ. 4) THEN !...13 
TOTKE10.246 

ENDIF !...13 
DO 83 1-1 ,NSMALL 
W=RADIUS(I) 
SUM2=SUM2+GAMMA(I)**2*W*(ALOG(8.0*W/CORE(I))-1.75)/2.0 

TNBAR=TOTKE-SUM2-SUMl 
XTEMP-EXP(2.O*TNBAR/(GAMMA(NRING)**2*RADIUS(NRING))+l.75) 
CORE (NRING) =8.0*RADIUS (NRING) / X T W  

C--Get volume of tip core 
C 

C 
VOLTIP=2.O*PI*PI*RADIUS(NRING)*CORE(NRING)**2 

ELSE !...ll tip parameters f o r  2-D flow 
HEIGHT(NR1NG)-BO 
REDG=l.O-FRAC 
GAMMA (NRING) = (-GCONST) - 
RADIUS(NRING)=l.O-AO 

s (-GCONST*(l.O-(REDG**IWING)*SqRT(l.O-REDG**2))) 

. CORE(NR1NG)-0.0 
VOLTIP=O.O 

ENDIF ! . . .ll 
ENDIF ! . . .10 

C 

C 
C--Center ring 
C 

IF (IWING .Eq. 0) THEN !...is 
GMAX=-GCONST 
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ELSE !...16 
GMAX=O . 0 

ENDIF !...16 

HEIGHT(O)=O.O 
RAD IUS ( 0 )  -0.0 

C 
c--If 
C' 

$ 

$ 

$ 

$ 

1920 

$ 

$ 

717 

panel case, then calculate some more initial parameters 

IF (IPANEL .Eq. 1) THEN ! . . .l0 
DO 1920 Is1,NSMALL-1 
SLI- SqRT ( (RADIUS (I) -RADIUS (I- 1) ) **2 

+(HEIGHT(I)-HEIGHT(I-1))**2 ) 
SR- SqRT( (RADIUS(I)-RADIUS(I+1))**2 

+(HEIGHT(I)-HEIGHT(I+l))**2 ) 
Al~((SL*SR)/(SL-SR))*((RADIUS(I+l)-RADIUS(I))/SR**2 

Si=( (SL*SR) / (SL-SR) ) * ((HEIGHT(I+l) -HEIGHT( I) )/SR**2 
DRPAN (I) =A1 
DZPAN(I)=Bl 

-(RADIUS (1-1) -RADIUS (I) )/SL**2) 

-(HEIGHT( 1-1) -HEIGHT( I) )/SL**2) 

CONTINUE 
A2= ( (RADIUS (I+l) -RADIUS (I) ) /SR- (RADIUS (1- 1) -RADIUS (I) ) /SL) 

B2=( (HEIGHT(I+l) -HEIGHT(I) ) /SR- (HEIGHT(1-1) -HEIGHT( I) ) /SL) 

DRPAN(NSMALL)=Al+A2*SR 
DZPAN(NSMALL)=Bl+B2*SR 
DO 717 I-1,NSMALL 
WPAN(I)-(AXLSEG(I)-AXLSEG(I-1))/2.0 !WAN is panel half-width 
CONTINUE 

/ ( SR- SL) 

/(SR-SL) 

ENDIF !...le 
C 

DO 8316 I=O,NRING 

GMTOrGAMMA (NRING) 
8316 HEIGHT(I)~HEIGHT(I)-1.O*TIME(1) 

C 
C--Write out the input data 
c . .  

WRITE(IWR,*) ' NRING =' ,NRING 
WRITE(IWR,*)' FRAC =',FRAC 
WRITE ( IWR , *) ' INTKOD = ' , INTKOD 
WRITE(IWR,*)' DXMAX =',DXMAX 
WRITE(IWR,*)' NSTEP =',NSTEP 
WRITE(IWR,*) ' THMAX ='  ,THMAX 
WRITE(IWR,*)' IWING =',IWING 
WRITE(IWR,*)' IREDIS =',IREDIS 
WRITE(IWR.*) ' NU2 =' ,NU2 
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C 

C 
C--Compute velocities at step ISTEP which 
C corresponds to time (ISTEP-l)*"DT" and also update positions 
C 

DO 99 ISTEP=LASTSTEP,NSTEP+LASTSTEP-1 

CAU M O W (  ISTEP) 
IF (IREDIS .Eq. 1) THEN 
WVTIP=YYVEL(NRING) 
WTIP=WEL(NRING) 
CTIP-CORE (WING) 
NIN=NSMALL 
NOUT-NSMALL 
GMMIGMAX-GAMMA ("RING) 
CAE REDISC(RADIUS,HEIGHT.GAMMA,NIN,NOUT,GMM,SUML.DELTAL, 

$ TIMF.(ISTEP+l)) 
WVEL(NRING)=WTIP 
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WEL(NRING)=WTIP 
CORE (NRING) =CTIP 

END IF 
IF (IREDIS .Eq. 1) THEN 
WVTIP=WVEL (NRING) 
WTIPmWEL (NRING) 
CTIP=CORE (NRING) 
CALL LUMPS (TIME (ISTEP+l) ) 
WVEL(NRING)=WVTIP 
UVEL(NRING)=WTIP 
CORE(NRING1 =CTIP 

END IF 
C 
C--Now update the core size, since the sheet has stretched 
C 

IF (IAXI .Eq. 1) THEN 
DO 691 II=l,NSMALL 
CORE (11) = W A N  (11) /2.0 691 

END IF 
C 
C--Write data to disk (unit 2) for plotting later 

-C - - 

Nu2=NU2c 
IF (TIME(ISTEP+l) .LT. TIMEBC) NU2=NU2B 
IF (TIME(ISTEP+l) .LT. TIMEAB) NU2=NU2A 

IF((ISTEP/NU2)*NU2-ISTEP.EQ.O 
C 

$ . OR. ISTEP . Eq . NSTEP+LASTSTEP- 1) THEN 
WRITE(2)NRING,CORE(NRING) ,TIME(ISTEP+i) 
WRITE(2~~RADIUS~I~,HEIGHT(I),GAMMA(I),AXLSEG(I),I=O,NRING) 
WRITE(2)TIPVAX 

ENDIF 

NOWSTEPoISTEP 
C 

99 CONTINUE 
C 
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144 

C 
IF (ILOC .Eq. 1) THEN 
GETRAD=(Rl+R2)/2.0 

ELSE 
Fl~((S~RT(l.O-Rl**2))**3-(S~RT(l.O-R2**2))**3)*8.O/3.O 
F2~4.0*R1**2*SqRT(l.O-R1**2) 
F3=4.0*R2**2*SqRT(l.O-R2**2) 
F4=4.0* (SqRT ( 1 . O-R1**2) -SqRT ( 1.0-R2**2) ) 
GETRAD=SqRT((Fl+F2-F3)/F4) 

END IF 

RETURN 
END 

C 

SUBROUTINE MOVEM(1STEP) 
COMMON /B1/ RADIUS(0:QOO) ,HEIGHT(O:QOO) ,WVEL(O:OOO) ,WEL(O:OOO), 

s GAMMA(0:QOO) ,CORE(O:QOO) ,TIME(O:5000) ,TENERG(O:5000), 
s TIMPUL (0 : 6000) 
COMMON /B2/ NRING,PI.DXMAX,INTKOD,NSMALL,VOLTIP,IAXI 
COMMON /RK/ RADO(O:QOO),HEIO(O:QOO),RK(O:QOO,4),HK(O:QOO,4~ 
COMMON /NOW/ TIMENOW,BIGRREF 
COMMON /Fl/ ALPLAST,GMTO 
COMMON /Gl/ TIPVAX 

C 
C--Computes velocities and new positions using either Euler or 
C Runge-Kutta time stepping 
C 
C--First save original data 
C 

ALPO=ALPLAST 
DO 20 I=O,NRING 

RAD0 ( I) =RADIUS (I) 
HEIO(I)=HEIGHT(I) 

20 CONTINUE 
C 
C--Now check for time step method 
C 

C 
IF (INTKOD .Eq. 0) THEN lEuler time step 

TIMENOW=TIME(ISTF,P) 
CALL VELOCY 
CALL GETDT(DT1 
CALL GETK(1) 
CALL UPDATE (DT ,1) 
TIPVAX=WVEL(NRING) 

C 



ELSE !Rage-Kutta time step 
C 

CALL PULANG(NR1NG-1,BEFORE) !angle at last panel center at start 
TIMENOW=TIME(ISTEP) 
CALL VELOCY 
CALL GETDT(DT) 
CALL GETK(1) 
CALL UPDATE(DT/2.0,1) 
TIPVAXWVEL (NRING) 

CALL PULANG(NR1NG-1,ANOW) !get new angle and compute the change 
ALPLAST-ALPO+(ANOW-BEFORE) !and add it to the angle of the edge 
TIMENOW=TIME(ISTEP)+DT/2.0 
CALL VELOCY 
CALL GETK(2) 
CALL UPDATE (DT/2.0,2) 

CALL PULANG(NR1NG-1,ANOW) 
ALPLAST=ALPO+ (ANOW-BEFORE) 
TXMENOW-TIME(ISTEP)+DT/2.0 
CALL VELOCY 
CALL GETK(3) 
CALL UPDATE(DT.3) 

CALL PULANG(NR1NG-1,ANOW) 
ALPLAST=ALPO+(ANOW-BEFORE) 
TIMENOW-TIME(ISTEP)+DT 
CALL VELOCY 
CALL GETK(4) 

C 

C 

C 

C 
C--Update positions for Runge-Kutta 
C 

DO 10 I=O,NRING 
RADIUS (I) =RADO(I) +(DT/6.0) * (RK(I,l) +2.O*RK(I ,2) + 

HEIGHT (I) =HEIO(I) +(DT/6.0) * (HK(I.1) +2.0*HK(I ,2) + 
3 

s 
2.0*RK(I ,3) +RK(I , 4) ) 

2.0*HK( I, 3) +HK( I, 4) 1 
10 CONTINUE 

C 

C 
C--Compute the new core radius for the tip ring and update time 
C 

END IF 

CORE(NRING)=SqRT(VOLTIP/(2 .O*RADIUS(NRING)) )/PI 
TIME(ISTEP+l) =TIME (ISTEP) +DT 

RETURN 
C 
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END 
SUBROUTINE GETK(N) 
COMMON /B1/ RADIUS(0:900) ,HEIGHT(O:900) ,yyVEL(O:900) ,WEL(O:900), 

s 
s TIMPUL(O:6000) 

GAMMA(0 : 900) , CORE (0 : 900) , TIME (0 : 6000) , TENERG (0 : 6000) , 

COMMON /B2/ NRING,PI,DXMAX,INTKOD,NSMALL,VOLTIP,IAXI 
COMMON /RK/ RAD0(0:900),HE10(0:900),RK(0:900.4).HK(0:900,4~ 

C 
C--Computes the 4 K parameters used in the Runge-Kutta routine. 
C 
C 

The K's are just the velocity components. 

DO 10 I=O,NRING 
RK(1 ,N)-UVEL(I) 
HK(I ,N)=WVEL(I) 

10 CONTINUE 

RETURN 
END 
SUBROUTINE UPDATE(H,N) 
COMMON /Bl/ RADIUS (0 : 900) ,HEIGHT (0 : 900) , WVEL (0 : 900) , WEL(0 : 900) , 

C 

$ 
$ TIMPUL(0 : 5000) 

GAMMA (0 : 900) , CORE (0 : 900) , TIME (0 : 5000) , TENERG (0 : 5000), 

COMMON /B2/ NRING,PI,DXMAX,INTKOD,NSMALL,VOLTIP,IAXI 
COMMON /RK/ RAD0 (0 : 900) , HE10 (0 : 900) , RK (0 : 900 , 4) , HK (0 : 900,4) 
COMMON /PANEL/ IPANEL,DRPAN(O:900),DZPAN(O:9OO),WAN(O~900~ 

C 
C--Computes new positions of the rings based on the time step H and 
C 
C 

the velocity contained in RK and HK. 

DO 10 I=O,NRING 
RADIUS (I) =RAD0 ( I) +H*RK (I, N) 
HEIGHT(I)=HEIO(I)+H*HK(I,N) 

10 CONTINUE 
C 
C--Compute the new core radius for the tip ring 
C 

C 
C--If panel case, estimate inclinations 
C 

CORF.(NRING)-SQRT(VOLTIP/(2.O*RADIUS(NRING~~~/PI 

IF (IPANEL .Eq. 1) THEN 
DO 20 111 ,NSMALL-l 
SL=-SQRT( (RADIUS(I)-RADIUS(I-1))**2 

SRm SQRT( (RADIUS(I)-RADIUS(I+1))**2 

Alp((SL*SR)/(SL-SR))*( (RADIUS(I+l) -RADIUS(I) )/SR**2 

3 

$ 

+ (HEIGHT ( I ) -HEIGHT ( I - 1 ) ) **2 ) 
+ (HEIGHT(1) -HEIGHT( I+l)) **2 ) 

146 



C 

C 
C- 
C 

$ 

$ 

- (RADIUS (I - 1) -RAD IUS ( I) ) /SL* *2) 
- (HEIGHT ( I - I) -HEIGHT ( I) ) /SL**2) Bl*( (SL*SR)/(SL-SR) ) *( (HEIGHT(I+l) -HEIGHT(I) )/SR**2 

DFtPAN(I)=Al 
DZPAN(I)=Bl 

20 CONTINUE 
A2-( (RADIUS( I+1) -RADIUS(I))/SR- (RADIUS(1-1) -RADIUS(I) )/SL) 

$ /(SR-SL) 
B2=( (~IGHT(I+l)-HEIGHT(I))/SR-(HEIGHT(I-l)-HEIGHT(I))/SL) 

$ / (SR-SL) 
DRPAN (NSMALL) =Al+AZ*SR 
DZPAN(NSMALL)=Bl+B2*SR 

END IF 

RETURN 
END 
SUBROUTINE GETDT (DT) 
COMMON /Bl/ RADIUS(0:900) ,HEIGHT(O:900) ,WVEL(O:900) ,WEL(0:900) I 

$ 
$ TIMPUL (0 : 6000) 

GAMMA(0:WO) ,CORE(O:900) ,TIME(O:5000) .TENERG(O: 5000). 

COMMON /B2/ NRING,PI,DXMAX,INTKOD,NSMALL,VOLTIP.IAXI 
COMMON /RK/ RAD0 (0 : 900) .HE10 (0 : 900) , RK (0 : 900.4) , HK(0 : 900.4) 

-Find m a x  velocity and DT, DT=(ABS(DXMAX) i f  DXMAX .LT. 0.0) 

IF (DXMAX .LT. 0.0) THEN 

ELSE 
DT-ABS (DXMAX) 

vMAx=WEL(0)**2+wvEL(0)**2 
DO 40 1x1 ,NRING 
VRING=WEL(1)**2+WVEL(I)**2 
IF (VRING .GT. WAX) VMAXxVRING 

40 CONTINUE 
VMAX=SqRT (VMAX) 
DT=DXMAX/VMAX 

END IF 
C 

RETURN 
END 
SUBROUTINE VELOCY 

C 
C- 
C 
C 

.-Decide between routines for velocity from rings or panels, for 
axi or f o r  2-D 
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COMMON /B2/ NRING,PI,DXMAX,INTKOD,NSMALL,VOLTIP,IAXI 
COMMON /PANEL/ IPANEL,DRPAN(O:900),DZPAN(O:9OO),WPAN(O:900~ 

C 



IF (IAXI .EQ. 1) THEN ! h i  case 
IF (IPANEL .EQ. 
CALL INDVEL 

ELSE 
CALL PANVEL 

ENDIF 

IF (IPANEL .EQ. 
CALL INDVEL2D 

ELSE 
CALL PANVELZD 

ENDIF 

ELSE 

ENDIF 

RETURN 
END 
SUBROUTINE INDVEL 

C 

C 

0) THEN 
!Rings 

!Panels 

12-D case 
0) THEN 

!Filaments 

!Panels 

C AXISYMMETRIC FILAMENTS (RINGS) 
C--This routine calculates the induced velocity at each ring position 
C 
C 

due to all the other rings and due to itself. 

COMMON /B1/ RADIUS(O:900) ,HEIGHT(O:900) ,WVEL(0:900) ,wEL(O:900) , 
$ 
$ TIMPUL(0 : 6000) 

GAMMA(0 : 900) , CORE(0 : 900) , TIME(0 : 5000) , TENERG (0 : 5000) , 

COMMON /B2/ NRING,PI,DXMAX,INTKOD,NSMALL,VOLTIP.IAXI 
REAL*4 LAMBDA , K 
DATA AO~AlSA2,A3,A4.BO,Bl,B2,B3,B4/ 

$ 1.38629438112, .09666344269, .03690092383, 
$ .03742663713, .01461196212, . 6  S 

$ .12488693697, .06880248676, .03328355346, 
$ .00441787012/ 

$ 1.0 , .44325141463, .06260601220, 
$ .04767383646, .01738606461, .O S 

$ .24998368310, .09200180037, .04069697526, 
$ . OOS26449639/ 

DATA CO~ClSC2,C3,C4,DO,D1,D2,D3,D4/ 

C 
C--Loop’over all rings, except center ring, get induced velocity at each 
C 

DO 10 I=l,NRING 

Z=HEI GHT ( I ) 
W=RADIUS (1) 

wvEL(1) -0.0 
wEL(I)=O. 0 

C 
C--Loop over all rings again (except control ring) and determine the 
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C contribution of each to the induced velocity at ring I. 
C 

$ 

s 

20 
26 

s 
$ 

30 
40 

IF (I .Eq. 1) GO TO 26 
DO 20 J0l.I-1 
WP=RAD IUS ( J 1 
ZP=HEIGHT( J) 
Rl=SqRT( (Z-ZP) **2+(W-W)**2) 
RZsSqRT ( (Z - ZP) * *2+ (w+W) * *2) 
LAMBDA= (R2-Rl) / (R2+Rl) 
FK=l.O-LAMBDA**a 
K - AO+FK*(Al+FK*(A2+FK*(A3+FK*A4))) 
E - CO+FK*(Cl+FK*(C2+FK*(C3+FK*C4))) +(BO+FK*(Bl+FK*(B2+FK*(B3+FK*B4))))*ALOG(l.O/FK) 

+(DO+FK*(Dl+FK*(D2+FK*(D3+FK*D4) )) )*ALOG(l .O/FK) 
Fl=( (W-WP)/Rl+(W+WP)/R2) *(K-E) 
F2-2.O*E*LAMBDA/ (l.O-LAMBDA**2) 
F3z(W*(R1**2-R2**2) +WP*(Rl**2+R2**2))/(Rl*R2*(Rl+R2)) 
WV=GAMMA( J)*(Fl+F2*F3)/(2 .O*PI*W) 

F~P(Z-ZP)*(R~+R~)/(R~*R~) 
F~PK-E*(L.O+LAMBDA**~)/(~.O-LAMBDA**~) 
W=GAMMA(J)*F4*F6/(2.O*PI*W) 

WVEL (I )=wvEL ( I) +wv 

rmEL(I)-WEL(I) -w 
CONTINUE 
IF (I .Eq. NRING) GO TO 40 
DO 30 J-I+l.NRING 
UP-RADIUS(J) 
ZP-HEIGHT( J) 
Rl-SqRT((Z-ZP)**2+(W-W)**2) 
R2=SQRT( (Z-ZP)**2+(W+W) **2) 
LAMBDA= (R2-Rl) / (R2+R1) 
FKIl. O-LAMBDA**2 
K - AO+FK* (Al+FK* (A2+FK* (A3+FK*A4) ) ) 
E - CO+FK*(Cl+FK* (CS+FK* (C3+FK*C4))) +(BO+FK*(Bl+FK* (B2+FK* (B3+FK*B4) )) *ALOG(l. O/FK) 

+(DO+FK*(Dl+FK*(D2+FK*(D3+FK*D4))))*ALOG(l.O/FK) 
Fl=( (W-WP)/Rl+(W+WP) /R2) * (K-E) 
F2=2.O*E*LAMBDA/ (l.O-LAMBDA**2) 
F3=(W* (R1**2-R2**2) +WP*(R1**2+R2**2))/(Rl*R2*(Rl+R2)) 
WV=GAMMA( J)*(Fl+F2*F3)/(2.0*PI*W) 
WVEL (I + V E L  (I) +WV 
F~X(Z-ZP)*(R~+R~)/(R~*~) 
FS=K-E*(l.O+LAMBDA**2)/(1.0-LAMBDA**2) 
W=GAMMA(J)*F4*F6/(2 .O*PI*W) 
wEL(I)=vvEL(I) -w 

CONTINUE 
CONTINUE 
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C 
C--Calculate f i n a l  velocity including self-induced component 
C 

WIGAMMA( I )  * (ALOG(8.O*W/CORE(I) ) - .25) / (4.0*PI*W) 
WVEL ( I  1 =WVEL ( I  +WV 

C 
C--get velocity of higher order terms i n  t i p  region, i f  not t i p  r ing  now 
C 

IF (I .NE. NRING) THEN 
CALL DOUBLET(W,Z,VXPRM.VYPRM,VRPRM,VTHPRM) 
WVEL ( I )  =wvEL ( I )  +VYPRM 
WEL (I) -wEL ( I )  +VXPRM 

ENDIF 
C 

C 
C--Get velocity contribution a t  t i p  due t o  inner s p i r a l  
C 

10 CONTINUE 

C A U  CENSP IR (VXP , WP ) 

WVEL(NRING)=WVEL(NRING)+WP 
WEL(NRING)=UVEL(NRING)+VXP 

C 
C--Get induced velocity a t  center by extrapolating the v e l o c i t i e s  of 
C points  1 and 2. F i t  a parabola (for the  velocity) through points  
C 
C the  slope=O a t  r = O .  
C 
C 

0,  1, and 2 by matching the  values a t  points  1 and 2 and s e t t i n g  

point)  is j u s t  the constant par t  of the  parabola. 
Then the velocity a t  r = O  ( i . e . ,  the  center  

WEL(0)  PO. 0 
WVEL(O)=(WVEL(l)*RADIUS(2)**2-WVEL(2)*RADIUS(1)**2) 

s /(RADIus(2)**2-RADIus(l)**2) 
C 
C--done 
C 

RETURN 
END 

SUBROUTINE PANVEL 
C 
C AXISYMMETRIC PANELS 
C - - T h i s  routine calculates  the induced veloci ty  a t  each panel centroid 
C 
C 

and a t  the t i p  r ing  due t o  a l l  the other panels and due t o  i t s e l f .  

COMMON /Bl/ RADIUS(0:QOO) ,HEIGHT(O:QOO) ,WVEL(O:QOO) ,WEL(O:QOO). 
3 G ~ A ( 0 : ~ 0 0 ) . C 0 R E ( 0 : ~ 0 0 ) , T 1 M E ( 0 : 6 0 0 0 ) , T E N ~ G ~ 0 : 5 0 0 0 ~ ,  
3 TIMPUL (0 : 6000) 
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COMMON 
COMMON 
COMMON 
COMMON 
REAL*4 

C 
C - - L o o p  over 
C 

/B2/  NRING , P I  ,D%MAX , INTKOD , NSMALL , VOLTIP , I A X I  
/PANEL/ IPANEL , DWAN (0 : 900) , DZPAN (0 : 900) , W A N  (0  : 900) 
/VELO/ R, XX , YY ,DXT ,DYT , WW , G 
/ D l /  D I S T I U  
LAMBDA, K 

all panels, except center ring, get induced velocity at each 

DO 10 I= l ,NSMALL 
WVEL (I) =o . 0 !axial velocity 
u v E L ( I ) = O . O  !radial velocity 

C 
C - - L o o p  over all panels again and determine the contribution of each to 
C 
C 

the induced velocity at panel I including the self-induced component. 

DO 20 J= l ,NSMALL 
R=RADIUS (J) 
G=GAMMA(J)/(2.O*WAN(J)) 
WW-WPAN(J) 
DXT=DRPAN ( J ) 
DY T=DZP AN ( J )  
XX-RADIUS ( I) -RAD I U S  ( J) 

. Y Y 4 l " E H T ( I )  -HEIGHT(J)  
DISTSQ=XX*XX+YY*YY 
IF (DISTSQ .LT.' DISTMX) THEN 

IF (I .EQ. J) THEN 
xx - -.l * ww 
CALL VELIN ( UINA,  VINA) 
CALL VELIO ( UIOA,  VIOA) 
CALL =LOUT( UOUTA, VOUTA) 
X X = . l * W W  
CALL VELIN ( UINB,  VINB) 
CALL VELIO ( UIOB,  VIOB) 
CALL VELOUT( UOUTB, VOUTB) 
U I N  = (UINA + UINB) / 2. 
V I N  = (VINA + VINB) / 2. 
U I O  = (UIOA + UIOB) / 2. 
V I 0  = (VIOA + VIOB) / 2. 
UOUT - (UOUTA + UOUTB) / 2. 
VOUT = (VOUTA + VOUTB) / 2. 
xx=o . 0 

CALL VELIN ( U I N .  VIN) 
CALL VELIO ( U I O ,  VI01 
CALL VELOUT( UOUT. VOUT) 

ELSE 

END IF 
ELSE 
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20 
C 
C--NOW 
C 

C 
C--get 
C 

C 

UIN=O . 0 
VIN-0 .O 
UIOtO. 0 
VIO=O . 0 
CALL VELOUT (UOUT , VOUT) 

ENDIF 
WEL ( I ) =WEL ( I) - (UIN+UOUT -UIO 1 
WVEL(I)=WVEL(I) - (VIN+VOUT-VIO) 

CONTINUE 

get contribution of t i p  r ing  

J=NRING 

Z=HEIGHT(I) 
WP-RADIUS (J) 
ZP=HEIGHT(J) 
Rl-SqRT((Z-ZP)**2+(W-W)**2) 
R2=SqRT( (Z-ZP) **2+(W+W)**2) 
LAMBDA=(R2-Rl)/(RZ+Rl) 
CALL ELLIP (LAMBDA, K ,E) 
F1-( (W-WP)/Rl+(W+WP)/R2) *(K-E) 
F2=2.O*E*LAMBDA/(l.O-LAMBDA**2) 
F3-(W* (Rl**2-R2**2)+WP*(R1**2+R2**2) )/(Rl*R2* (Rl+R2)) 
WV=GAMMA(J)*(Fl+F2*F3)/(2.O*PI*W) 

F41 (Z-ZP ) * (Rl +R2) / (R1 *R2) 
F6=K-E*(l.O+LAMBDA**2)/(1.0-LAMBDA**2) 
W-GAMMA(J)*F4*F6/(2.O*PI*W) 

W=RADIUS (I 1 

wvEL(I)=wvEL(I)+wv 

uVEL(I)=wEL(I)-W 

velocity of higher order terms i n  t i p  region 

CALL DOUBLET (W , Z , VXPRM . WPRM , VRPRM , VTHPRM) 
WVEL (I) =wvEL (I) + W P M  
uVEL(I)=wEL(I)+VXPRM 

1 0  CONTINUE 
C 
C--Get induced velocity a t  center by extrapolating the v e l o c i t i e s  of 
C points  1 and 2. F i t  a parabola (for the  velocity) through points  
C 0. 1, and 2 by matchingthe values a t  points 1 and 2 and s e t t i n g  
C the  slope=O a t  r=O. 
C 
C 

Then the velocity a t  r=O ( i . e . ,  the  center  
point)  is  j u s t  the constant par t  of the  parabola. 

UvEL(O)=O.O 
wvEL(O)=(wvEL(l) *RADIUS (2) **2-WVEL(2) *RADIUS (1) **2) 
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$ / (RAD IUS (2) **2-RADIUS ( 1) * *2) 
C 
C--Get induced velocity at the tip ring 
C 

WVEL (NRING) -0.0 
W E L  (NRING) PO. 0 
DO 40 J-1,NSMALL 
RxRADIUS (J) 
G-GAMMA( J) /(2.O*WPAN( J) ) 
WW-WAN (J) 
DXT=DRPAN (J) 
DYT=DZPAN(J) 
XX=RADIUS(NRING) -RADIUS(J) 
YY4EIGHT(NRING)-HEIGHT(J) 
CALL VELIN ( UIN, VIN) 
CALL VEL10 ( UIO, VIO) 
CALL VELOUT( UOUT, VOUT) 
WEL(NRING)4VEL(NRING)-(UIN+UOUT-UIO) 
WVEL(NRING)+VEL(NRING)-(VIN+VOUT-VIO) 

!loop over all panels 

40 CONTINUE 
C 
C--Get tip ring self-induced component 
C 

WV~GAMMA(NRING)*(ALOG(8.O*RADIUS(NRING)/CORE(NRING))-0.25) 
$ /(4.O*PI*RADIUS(NRING)) 
WVEL (NRING) -WVEL (NRING) +WV 

C 
C--Get velocity contribution at tip due to inner spiral 
C 

CALL CENSPIR(VXP,WP) 
UVEL(NRING)=WEL(NRING) +VXP 
WVEL (NRING) +VEL (NRING) + W P  

C 
C--done 
C 

RETURN 
END 
SUBROUTINE INDVEL2D 

C 
C This routine is for the 2-D case, i.e., filaments 
C 
C due to all the other filaments and due to itself. 
C 

It calculates the induced velocity at each filament position 

COMMON /B1/ RADIUS(0:QOO) ,HEIGHT(O:QOO) ,WVEL(O:QOO) ,UVEL(O:OOO), 
3 
$ TIMPUL(0 : 5000) 

GAMMA (0 : 900) , CORE (0 : 900) , TIME (0 : 5000) , TENERG (0 : 5000) , 

COMMON /B2/ NRING,PI.DXMAX,INTKOD,NSMALL,VOLTIP,IAXI 
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COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
REAL*4 

C 

/PANEL/ IPANEL,DRPAN(O:900) ,DZPAN(O:900) .WPAN(O:QOO) 
/VELO/ R,XX,YY,DXT,DYT,W.G 
/B9/ IWR 
/SEGS/ AXLSEG(O:900) 
/NOW/ TIMENOW, BIGRREF 
/El/ TAUO,BDUM,CDUM,DDUM,TAU2LOOP 
/Fl/ ALPLAST,GMTO 
LAMBDA, K 

TPIINV-l.O/(2.O*PI) 
C 
C--Loop over all filaments, except center filament, 
C get induced velocity at each 
C 

DO 10 I-1,NRING 

Z-HEIGHT (1) 
W=RADIUS (I 1 

WVEL (I) -0.0 
wEL(I)-O.O 

IF (IWR .EQ. 26 
wRITE(IwR,*) ' 
WRITE(IwR, *) ' 

ENDIF 
C 

IF (I .EQ. 1) 

!index of control point 

! axial component 
!radial component 

.AND. I .GE. 68) THEN 
LOOP 10: I,W,Z',I,W,Z 
LOOP 20: J,GAMMA(J),XX.YY,UIN,VIN,UINRF,VINRF' 

GO TO 26 
DO 20 J-1,I-1 !points before control point 
XXsW-RADIUS(J) 
YY=Z-HEIGHT(J) 
QSqS-XX*XX+YY*YY 
GCON=GAMMA( J) *TPIINV/QSQS 
UIN=GCON*W 
VIN=-GCON*XX 
WVEL ( I) -WVEL (1) +VIN 
W E L  (I) = W E L  (1) +UIN 

20 CONTINUE 
26 IF (I .EQ. "RING) GO TO 40 

DO 30 J-I+l,NRING 
XXmW-RADIUS( J) 
YY=Z-HEIGHT(J) 
QSqS=XX*XX+YY*YY 
GCON=GAMMA(J)*TPIINV/QSQS 
UIN=GCON*YY 
VINI-GCON*XX 
WVEL (I) =WVEL( I) +VIN 
UVEL (1) = W E L  (I) +UIN 

30 CONTINUE 
40 DO 45 J-1 ,NRING !contribution from reflection 

!points after control point 
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XX=W+RADIUS (J) 
YY=Z-HFJGHT( J) 
q6qS=XX*XX+YY*YY 

UIN-GCON*YY 
VINx-GCON*XX 
WVEL (I) =WEL (I) +VIN 
W E L  (I) -WEL (I) +UIN 

- GCON=-GAMMA(J)*TPIINVv/q5q5 

45 CONTINUE 
C 
C--Get veloci ty  of higher order terms i n  t i p  region, i f  not t i p  r ing  
C 

IF (I .NE. NRING) THEN 
CALL DOUBLET (W , Z , VXPRM , WPRM , VRPRM , VTHPRM) 
WVEL (I) -WmL (I) +WPRM 
WEL (I) - W L  (I) +VXPRM 

END IF 
C 

C 
C--Get veloci ty  contribution a t  t i p  due t o  inner s p i r a l  
C 

10 CONTINUE 

CALL CENSPIR(VXP,WP) 
WEL(NR1NG) -.WEL(NRING) +VXP 
WVEL(NRING)=WVEL(NRING) +WP 

C 
C--Get induced velocity a t  center by extrapolating the ve loc i t ies  of 
C points  1 and 2. F i t  a parabola ( for  the velocity) through points  
C 
C the  slope=O a t  r=O. 
C 
C 

0, 1, and 2 by matching the values a t  points  1 and 2 and s e t t i n g  

point)  i s  j u s t  the constant part of the  parabola. 
Then the veloci ty  a t  r=O ( i . e . ,  the  center 

WEL(0) PO. 0 
WVEL (0) p (WVEL ( 1) *RADIUS (2) **2-wvEL (2) *RADIUS ( 1) **2) 

9 / (RAD IUS ( 2) * *2-RADIUS ( 1 ) * *2) 
C 
C--done 
C 

RETURN 
END 
SUBROUTINE PANVEL2D 

C 
C This is  f o r  2-D flow, i . e . ,  2-D panels 
C--This routine calculates  the induced velocity a t  each panel centroid 
C 
C 

and a t  the  t i p  r ing  due t o  a l l  the  other panels and due t o  i t s e l f .  

COMMON /B1/ RADIUS(O:9OO),HEIGHT(O:9OO),~L(O:9OO),WEL~O:9OO), 
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$ 
$ 
COMMON 
COMMON 
COMMON 
COMMON 
REAL*$ 

C 
C--Loop over 
C 

GAMMA(0:OOO) ,CORE(O:OOO) ,TIME(O:5000) ,TENERG(O:5000), 
TIMPUL (0 : 5000) 

/B2/ NRING,PI,DXMAX,INTKOD,NSMALL,VOLTIP,IAXI 
/PANEL/ IPANEL , DRPAN (0 : 900) , DZPAN (0 : 900) , W A N  (0 : 900) 
/VELO/ R,XX,YY,DXT,DYT,WW,G 
/Dl/ DISTMX 
LAMBDA, K 

all panels, except center ring, get induced velocity at each 

DO 10 I=l,NSMALL 
WvEL(I)=O.O !axial velocity 
WEL(I)=O.O !radial velocity 

C 
C--Loop over all panels again (except for the control panel which has 
C 
C 
C 

no self-induced component) and determine the contribution of each to 
the induced velocity at panel I. 

DO 20 J-1 ,NSMAU 
R-RADIUS( J) 
G=GAMMA( J) / (Z.O*WPAN( J)) 
WW=WPAN (J) 
DXT-DRPAN (J) 
DYT=DZPAN( J) 
XX-RADIUS(1)-RADIUS(J) 
YY~HEIGHT(I)-HEIGHT(J) 
DISTSq=XX*XX+YY*YY 
IF (I .NE. J) THEN 
IF (DISTSq .LT. DISTMX) THEN 

ELSE 

ENI) IF 

UIN=O . 0 
VIN=O . 0 

CALL VEL2D(UIN,VIN) 

CALL VELZDF(UIN,VIN) 

ELSE 

ENDIF 

Gx-G 
XX=RADIUS(I)+RADIUS(J) 
DISTSq=XX*XX+YY*YY 
IF (DISTSq .LT. DISTMX) THEN 

ELSE 

ENDIF 
W E L (  I) s W E L (  I) -UIN-UINRF 

. .  DXTm-DXT !contribution from reflection 

CALL VELZD(UINRF.VINRF) 

CALL VEL2DF (UINRF , VINRF) 
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WVEL(I)~WVEL(I)-VIN-VINRF 
20 CONTINUE 

C 
C--Now get contribution of tip filament 
C 

J=NRING 
WWPAN=l. 0 
G=GAMMA( J) /(2.O*VYWPAN) 
WWoWWPAN 
DXT=DRPAN (J) 
DYT-DZPAN(J) 
XX4tADIUS(I)-RADIUS(J) 
YY4iEIGHT ( I ) -HE1 GHT ( J ) 
CALL WL'LDF(UIN,VIN) 
DXT=-DXT !contribution from reflection 
Gm-G 
XX-RADIUS (I) +RADIUS (J) 
CALL VEL2DF(UINRF .VINRF) 
WVEL(I)=WVEL(I) -VIN-VINRF 
WEL(1) 4JVEL( I) -UIN:UINRF 

C 
C--get velocity of higher order terms in tip region 
C 

CALL DOUBLET (W , 2 , VXPRM , WPRM , VRPRM , VTHPRM) 
WVEL (I) =wvEL (I) +vYPRM 
UVEL (I) =WEL (I) +VXPRM 

C 

C 
C--Get induced velocity at center by extrapolating the velocities of 
C points 1 and 2. Fit a parabola (for the velocity) through points 
C 
C the slope=O at r=O. 
C 
C 

10 CONTINUE 

0, 1, and 2 by matching the values at points 1 and 2 and setting 

point) is just the constant part of the parabola. 
Then the velocity at r=O (i.e., the center 

UVEL(O)=O. 0 
WVEL(O)=(WVEL(l) *RADIUS (2)**2-wvEL(2) *RADIUS( 1) **2) 

3 -  /(RADIUS(2)**2-€UDIUS(1)**2) 
C 
C--Get induced velocity at the tip filament due to all of the panels 
C 

WVEL(NR1NG) SO.  0 
WEL(NRING)=O.O 
DO 40 J=l,NSMALL 
R=RADIUS(J) 
GpGAMMA (J) / (2.O*WPAN( J) 
WW=WPAN(J) 

!loop over all panels 
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DXT=DFf.PAN (J) 
DYT=DZPAN (J) 
XX=RADIUS(NRING) -RADIUS( J)  

CALL VEL2D (UIN ,VIN) 
DXT= -DXT !contribution from reflection 
G--G 

CALL VEL2D(UINRF,VINRF) 
WEL(NRING)=WEL(NRING)-UIN-UINRF 
WVEL(NRING)PWVEL(NRING)-VIN-VINRF 

W=HEIGHT(NRING)-HEIGHT(J) 

XX-RADIUS (NRING) +RADIUS ( J) 

40 CONTINUE 
C 
C--Get the remaining contribution to the induced velocity at the tip 
C from its reflection 
C 

wwPAN=l. 0 
G=-GAMMA( J)/ (2.O*WWPAN) 
WW=WWPAN 
DXT=-DRPAN (J) 
DYT- DZPAN( J )  
XX=RADIUS (I) +RADIUS (J) 
YY=HEIGHT (I) -HEIGHT (J)  
CALL VEL2DF (UINRF ,VINRF) 

WEL(NRING)-WEL(NRING)-UINRF 
&L(NRING) =WVEL(NRING) -VINRF 

C 
C--Get velocity contribution at tip due to inner spiral 
C 

CALL CENSPIR(VXP ,WP) 
WEL(NRING)=WEL(NRING)+VXP 
WVEL(NRING)=WVEL(NRING)+WP 

C 
&-done 
C 

RETURN 
END 
SUBROUTINE IMPULS(T1MP) 

' C  
C--Computes total impulse of the vortex filament system for 
C either axi or 2-D. 
C 
C 

(Note: only computing the llxn or nradialn 
component of the 2-D impulse. 

COMMON /B1/ RADIUS(0:QOO) ,HEIGHT(O:QOO) ,WVEL(O:QOO) ,WEL(O:QOO), 
$ 
$ TIMPUL(0: 6000) 

GAMMA(0:OOO) ,CORE(O:QOO) ,TIME(O: 6000) ,TENERG(O:6000), 

COMMON /B2/ NRING,PI.DXMAX.INTKOD,NSMALL.VOLTIP.IAXI 
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C 
IF (IAXI .Eq. 1) THEN 
TIMP-0 . 0 
DO 10 I-1,NRING 

10 TIMP=TIMP+PI*GAMMA(I) *RADIUS(I) **2 
ELSE 
TIMP=O . 0 
DO 20 I=l,NRING 

20 TIMP-TIMP+GAMMA(I) *RADIUS(I) 
ENDIF 

RETURN 
END 
SUBROUTINE TOTENG(ENERG) 

C 

C 
C--Computes total energy of the vortex ring system 
C 

COMMON /Bl/ RADIUS(0:900) ,HEIGHT(O:900) ,WVEL(0:900) ,WEL(O:900) , 
$ GAMMA(O:900) ,CORE(O:900) ,TIME(O:5000) ,TENERG(O:5000), 
$ TIMPUL(0: 6000) 
COMMON /B2/ NRING.PI,DXMAX,INTKOD,NSMALL,VOLTIP,IAXI 
REAL*4 LAMBDA,K 

SuMl=O . 0 
SuM2=0.0 
DO 20 I=l,NRING 
W-RADIUS ( I) 
Z-HEIGHT (I ) 
DO 20 J4,NRING 

c .  

IF (I .NE. J) THEN 
WP=RADIUS (J) 
ZP-HEIGHT(J) 
Rl=SqRT( (Z-ZP)**2+(W-WP) **2) 
R2=SQRT( (Z-ZP) **2+ (W+WP) **2) 
LAMBDA= (R2 -Rl ) / (R2+Rl) 
CALL ELLIP(LAMBDA,K,E) 
SuMl=SUMl+GAMMA(I) *GAMMA( J) *(Rl+R2) *(K-E) /(2.0*PI) 

END IF 

SuMl=SuMl*PI 

DO 30 I-1,NRING 

20 CONTINUE 

C 

W=RADIUS (I) 
30 SUM2=SUM2+GAMMA(I)**2*W*(ALOG(8 .O*W/CORE(I)) -1.75)/(2 .O*PI) 

SuM2=SuM2*PI 

ENERG=SUMZ+SUMl 
C 
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C 
RETURN 
END 
SUBROUTINE ELLIP (RK , SUMK , SUME) 

C 
C--Computes complete elliptic integrals, function of RK. 
C Uses a four term series approximation. 
C 
C 
C 

C 

C 

C 

C 

SUMK = K(RK) - FIRST KIND 
SUME = E(RK) - SECOND KIND 
DATA A0 , A1 , A2 , A3, A4 ,BO , B1, B2 , B3 , B4/ 

$ 1.38629436112, .09666344259, .03690092383, 
$ .03742563713, .01461196212, .5  # 

$ .12498693697, .06880248576, .03328355346, 
$ .00441787012/ 

$ 1.0 , .44326141463, .06260601220. 
$ .04757383546, .01736506451, .O 8 

$ .24998368310, .09200180037, .04069697626, 
$ .00626449639/ 

DATA CO,Cl,C2,C3,C4,DO,Dl.D2,D3,D4/ 

FK=l.O-RK**a 
SUMK = AO+FK* (Al+FK* (A2+FK* (A3+FK*A4) 

SUME = CO+FK*(Cl+FK* (C2+FK* (C3+FK*C4))) 
$ +(BO+FK*(Bl+FK*(B2+FK*(B3+FK*B4))))*ALOG(l.O/FK) 

$ + (DO+FK* (Dl+FK* (D2+FK* (D3+FK*D4) *ALOG(l. O/FK) 

RETURN 
END 
SUBROUTINE SETA 
COMMON /B2/ NRING,PI,DXMAX,INTKOD,NSMALL,VOLTIP,IAXI 
COMMON /Ea/ AO,Al,A2,A3,RHOSTAR,A 
COMMON /El/ TAUO,BDUM,CDUMSDDUM.TAU2LOOP 
COMMON /F1/ ALPLAST,GMTO 
COMMON /NOW/ TIMENOW.BIGRREF 

ALPLASTmPU2.0 
TAUO=0.046 
BIGRREF=0.0966063 
TAU2L0OP~1.4642 
IF (IAXI .Eq. 0) THEN 
A=SqRT(2.0) 

ELSE 
A-2.0*SqRT(2.0)/PI 

ENDIF 

RETURN 
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END 

SUBROUTINE REDISC(R,Z,DGAM,NIN,NOUT,GMAX,SUML,DELTAL,TIMEY) 
C 
C--This does curve f i t t i n g  using blended parabolas on R, Z, DGAM 
C 

COMMON /B2/ NRING,PI.DXMAX.INTKOD,NSMALL.VOLTIP,IAXI 
COMMON /B9/ IWR 
COMMON /C1/ LINEUP,MAXSEGS.MINSECT 

DIMENSION R(0:900),Z(0:900),DGAM(0:900),S(0:900),qR(0:900), 
s ~Z(0:900),A0(0:900),A1(0:900),A2(0:900),A3~0:900), 
$ B0(0:900) ,Bl(0:900) ,B2(0:900) ,B3(0:900) ,C0(0:900), 
s C1(0:900),C2(0:900),C3(0:900~,GM1D(0:9~~,SM1D(0:900~, 
$ q (0 : 900) , RS (0 : 8100) , ZS (0 : 8100) , AL (0 : 8100) , 
s THSUB (0: 8100) , ARCG(0 : 900). GPL(0 :900) 

C 

DIMENSION ROLD(O:9OO),ZOLD(O:9OO~,DGAMOLD(O:9OO) 
COMMON/STAR/ICIRC (10) ,FCIRC (10) , SSTAR( 10) , GSTAR( 10) , NSTAR 
COMMON /PANEL/ IPANEL , DRPAN (0 : 900) , DZPAN (0 : 900) , W A N  (0 : 900) 

COMMON /Fl/ ALPLAST,GMTO 
LOGICAL LINEAR !LINEAR = .TRUE. for l i n e a r  c i r c .  f i t  
DATA LINEAR/.FALSE./ !LINEAR = .FALSE. for cubic c i r c .  f i t  
DATA NSUB/9/ 

ILOOPER=O 

DO 1 I=O,NRING 
ROLD (I) =R( I) 

._ 
COMMON /SEGS/ AXLSEG (0 : 900) __ - 

C 

C 

ZOLD (I) =z (I) 
1 DGAMOLD(I)=DGAM(I) 

C 
C--Get straight l i n e  distances between points ,  S(1) is  the t o t a l  
C 
C 

distance along the s t r a i g h t  l i n e s  t o  node I 

S(O)=O.O 
DO 20 I=l,NIN 

20 S (1143 (I- 1) +SqRT( (Z (I) -Z (1-1) ) **2+ (R( I) -R( I- 1) ) **2) 
C 
C--Get value of s for the  t r a i l i n g  extended segment, t h i s  value 
C 
C 

C 
C--Get slopes a t  each i n t e r i o r  node, qR(I)=D(R)/DS a t  node I 
C 

of S is  out a t  the presumed end of the  sheet .  

S(NIN+l)=S(NIN)+O.S*(S(NIN)-S(NIN-1)) 
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DO 30 Ia1,NIN-1 
Sl=(S(I+l~-S(I))/(S(I-1~-S~I~ 1 
s231 . o m  
s3-l.o/(s(I+l)-s(I-1~) 
~R(I)~((R(I-l)-R(I))*S1-(R(I+l)-R(I))*S2~*S3 

30 qZ(I)~((Z(I-l)-Z(I))*S1-(Z(I+l)-Z(I))*S2)*S3 
C 
C--Coef's for interior segments 
C 

DO 40 Ix1,NIN-2 
Sl=l. o/ (S  (I+ 1) -s ( I) 1 
A0 (I ) =R( I) 
A1 (I)=qR(I) 
A2(I)-Sl*( -qR(I+l) -2*qR(I)+3*Sl* (R(I+l) -R(I) 
A3( I)=Sl*Sl* (qR(I+l)+qR(I) -2*Sl*(R(I+l) -R(I))) 
BO (I) =Z ( I) 
Bl(I)=QZ(I> 
B2(I)=Sl*(-qZ(I+l) -2*qZ(I)+3*Sl*(Z(I+l) -Z(I))) 

40 B3(I)~Sl*Sl*(qZ(I+1)+qZ(I)-2*Sl*(Z(I+l)-Z~I~~~ 
C 

C 
C--Coef's for first segment __ - 

Sl=S(l) -S(O) 
S2=S(2) -s ( 0 )  
s3=1 .O/(S(2) - S ( l ) )  
A0 (0 )  =R ( 0 )  
Al(O)~((R(l)-R(O))*S2/S1-(R(2)-R(O))*Sl/S2)*S3 
A2(O)~((R(2)-R(O))/S2-(R(l)-R(O))/Sl)*S3 
A3 ( 0 )  =O . 0 
BO ( 0 )  =Z ( 0 )  
Bl(O)~((Z(l)-Z(O))*S2/Sl-(Z(2)-Z(O))*Sl/S2)*S3 
B2(O)~((Z(2)-Z(O>)/S2-(Z(l)-Z(O))/Sl)*S3 
B3(0)=0.0 

C 
C--Coef's for last segment 
C 

N=NIN 
Sl=S(N) -S(N-I) 
S2-S(N-2)-S(N-l) 
S3=1.0/ (S (N-2) -S  (N) ) 
A0 (N- 1) =R(N- 1) 
Al(N-l)~((R(N)-R(N-l))*S2/Sl-(R(N-2)-R(N-l))*Sl/S2)*S3 
A2(N-1)=( (R(N-2>-R(N-l>)/S2-(R(N)-R(N-l))/Sl)*S3 
A3 (I- 1) -0.0 
BO(N-l)=Z (N-1) 
B1 (N-l)=( (Z (N) -Z(N-l) ) *S2/S1- (Z(N-2) -Z (N-1) ) *Sl/S2) *53 
B2 (N-l)=.( (Z (N-2) -Z (N-1) )/S2- (Z(N) -Z(N-1) ) /S1) *S3 
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B3(N-l)=0.0 
C 
C--Get the angle of the ring with index NSMALL wrt the tip core 
C 

C 
C--Get the "An coefficient for the Kadin spiral 
C 

CALL PULANG(NIN,THNIN) 

RNU=XNU (THNIN) 
IF (ABS(SIN(THN1N)) .GE. 0.6) THEN 

ELSE 

END IF 

A=(Z(NRING) -Z(NIN) )/ ("€ININ** (-RNU) *SIN(THNIN) ) 

A=(R(NRING) -R(NIN))/(THNIN**(-RNU)*COS(THNIN)) 

C 
C--Get array of R and Z at the subinterval locations, and compute 
C 
C 
C--First do the blended parabola segments 
C 

the total length of the curve 

RS(O)=AO(O) 
ZS(O)=BO(O) 

DO 60 I=O,NIN-l 
DO 60 KSUB-1,NSUB 
J-I*NSUB+KSUB 
T=(S (I+1) -S  (I) ) *FLOAT(KSUB)/FLOAT (NSUB) 
RS (J) =A0 (I) +T* (A1 (I) +T* (A2 (I) +T*A3 (I) ) ) 
ZS (J) =BO(I) +T* (B1 (I) +T* (B2(I) +T*B3 (I) ) 

AL(O)=O. 0 

60 AL( J)xAL( J- 1) +SPILT( (RS (J) -RS (J- 1) ) **2+ (ZS (J) -ZS (J-1) ) **2) 
C 
C--The next few sections find the value of theta at the end of the 
C trailing extended segment, i.e., gets the theta corrosponding 
C to arclength S(NIN+l) 
C 
C--First, before doing the numerical integration, need to get a 
C value to use for delta theta 
C 

DSIS(NIN+l) -S(NIN) 
RNU=XNU (THNIN 1 
DTG=DS/(SqRT(RNU**2+T"IN**2)*A*THNIN**(-RNU-l.O)) 
DTG=DTG/2.0 

C 
C--Now have delta theta (i.e.. DTG) which should yield several 
C steps in the numerical integration from S(N1N) to S(NIN+l). 
C 
C--Now do the numerical integration and search for theta(NIN+l) 
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C 

64 

63 

C 

ITERS=O 
SEND=S(NIN+l) -S(NIN) 
STHI0 . 0 
TH=THNIN 
ITERS=ITERS+l 
IF (ITERS .GT. 100) STOP 'ITERS .GT. 100 LOOP 63' 

RI=R(NRING) -A*COS(TH)*TH**(-RNU) 
Zl=Z(NRING) -A*SIN(TH) *TH** (-MU) 
RNU-XNU(TH+DTG) 
R2=R(NRING)-A*COS(TH+DTG)*(TH+DTG)**(-RN) 
Z2=Z(NRING)-A*SIN(TH+DTG)*(TH+DTG)**(-RNU) 
DS=SQRT((RZ-R1)**2+(22-Z1)**2) 
IF (STH+DS .GE. SEND) GO TO 63 
STH=STH+DS 
TH=TH+DTG 
GO TO 64 
FRAC=(SEND-STH)/DS 
THNINl=TH+FRAC*DTG 

RNU=XNU(TH) 

C--Now can get the sub-interval locations over the extended spiral 
C segment. 
C 

DTH=(T"INl-THNIN)/NSUB 
DO 66 KSUB=l ,NSUB 
THETA-THNIN+KSUB*DTH 
J-NIN*NSUB+KSUB 
RNU-XNUO'HETA) 

ZS(J)=Z(NRING) -A*THETA**(-RNU)*SIN(THETA) 
AL( J)=AL( J-1) +SqRT( (RS (J) -RS (J-1)) **2+(ZS( J) -ZS (J-1) **2) 

R~(J)-R(NRING)-A*THETA**(-RNU)*COS(THETA) 

66 CONTINUE 
C 
C--Total length of curve is SUML 
C 

C 

C 
C--Check for lineup of spiral 
C 

IF (LINEUP .Eq. 1) THEN 

ELSE 

ENDIF 

SUML-AL((NIN+l)*NSUB> 

689 CONTINUE 

GO TO 2010 

GO TO 2020 

sheet segments 

!line up the segments 

!for equal sized segments 
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C 
C--This section for equal sized segments 
C 
C--Get new R and Z points at distance DELTAL apart, these are the 
C centroids 
C 
2020 

80 

60 
70 

C 

DELTAL=SUML/NOUT 
XLSEG=DELTAL/2.0 
AXLSEG(O)=O.O 
Is1 
DO 60 J=l,NSUB*(NIN+l) 
IF (XLSEG .LT. AL(J-1) .OR. XLSEG .GT. AL(J)) GO TO 60 
FRAC=(XLSEG-AL(J-l))/(AL(J)-AL(J-l)) 
R (I)=FRAC* (RS (J) -RS (J- 1) ) +RS (J- 1) 
Z( I)=FRAC* (ZS( J) -ZS( J-1) ) +ZS( J-1) 
AXLSEG(I)=XLSEG+DELTAL/2.0 

WPAN(I)=DELTAL/2.O !panel half -width 
I-1+1 
XLSEG=XLSEG+DELTAL 
IF (I .GT. NOUT) GO TO 70 
GO TO 80 
CONTINUE 
CONTINUE 
GO TO 2030 

!running total of arc length to 
I segment edge. 

C--This part is for lined up segments in the spiral region 
C 
2010 NOUTl=NOUT 

NTOTSUB=NSUB*(NIN+l) 
CALL ANGLES(RS,ZS,NTOTSUB,THSUB) 
ALPLAST-THSUB(NT0TSUB) !save angle at edge of sheet for DOUBLET 
IF (THSUB(NT0TSUB) .LE. 9.0*PI/2.0) THEN !ALFSPIR is the angle 
ALFSPIR~THSUB(NTOTSUB)-3.O*PI/2.0 !at which the "spiralfr 

ELSE !part of the sheet begins 
ALFSPIR=3.0*PI !(i.e., the equal angular 

ENDIF ! segments) 
IF (THSUB(NT0TSUB) .LT. 7.0*PI/2.0) GO TO 2020 !check for at 

!least 1.5 loop 
STOTAL=SUML !total length of sheet 
1-1 !find point on sheet where 

!the spiral section is 
I-1+1 !assumed to start, at 
GO TO 3613 !theta=ALFSPIR 

SSPIRAL=STOTAL-SFLAT 
R3PIQ2=SqRT( (RS(1) -ROLD (NRING) )**2+(ZS(I) -ZOLD (NRING) ) **2) 

3513 IF (THSUB(1) .GT. ALFSPIR) GO TO 3512 

35 12 SFLAT=AL ( I ) 
!length of spiral part of sheet 
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RAVERAGE=O. 0 
DO 3611 J=I,NTOTSUB 

361 1 RAVERAGE=RAVERAGE 
$ +SqRT( (RS(J) -ROLD(NRING))**2+(ZS(J)-ZOLD(NRING))**2) 

7126 

3080 

3060 

3060 
3070 

C 

RAVERAGE=RAVERAGE/ (NTOTSUB-I+l) 
DENOM4 . O+ (SSPIRAL*R3PIQ2) / (SFLAT*RAVERAGE) 
NSEG=NOUTl !# of sheet segments t o  be output 
NSEGFLAT=INT(NSEG/DENOM+0.5) 
NSEGSPIRzNSEG-NSEGFLAT 
RNLOOP=(THSUB(NTOTSUB)-ALFSPIR)/(2.0*PI) 
NTHSECT=INT((FLOAT(NSEGSPIR)/RNLOOP)+0.5) !#  of t h e t a  sect ions 
IF (NOUT1 .LT. MAXSEGS) THEN 

!estimate the  # of segments on 
!the f l a t  and s p i r a l  p a r t s  

! #  of loops i n  s p i r a l  

IF (NTHSECT .LT. MINSECT) THEN 
ILOOPER=ILOOPER+1 
IF (ILOOPER .GT. MAXSEGS) STOP ’ ILOOPER .GT. MAXSEGS’ 
NOUTl=NOUTl+l 
GO TO 7126 

ENDIF 
ENDIF 
DTHETA=2.0*PI/NTHSECT ! theta  increment of a t h e t a  sect ion 
I=1 !segment counter f o r  s p i r a l  region 
ISEGxNSEG+l-I !segment index, we are  going backwards 
THEDGE=THSUB(NTOTSUB)-DTHETA !edge of current segment (small the ta )  
IF (THEDGE .LT. 7.0*PI/2.0) GO TO 2020 !check for at  l e a s t  1.5 loop 
THMID=THEDGE+DTHETA/2.0 ! theta  for centroid of current segment 

DO 3060 J=NTOTSUB,l,-l 
IF (THMID .GT. THSUB(J) .OR. THMID .LT. THSUB(J-1)) GO TO 3050 
FRAC~(THMID-THSUB(J-l))/(THSUB(J)-THSUB(J-l)) 
R( ISEG) =FRAC* (RS (J) -RS (J- 1)) +RS (J- 1) 
Z(ISEG)gFRAC*(ZS(J)-ZS(J-l))+ZS(J-l) 
THMIDsTHMID-DTHETA 
IF (THEDGE .GT. THSUB(J) .OR. THEDGE .LT. THSUB(J-1)) GO TO 3060 

AXLSEG ( ISEG) = s m  

FRAC=(THEDGE-THSUB(J-~))/(THSUB(J)-THSUB(J-~)) 
AXLSEG ( ISEG-i) =FRAC* (AL( J) -AL ( J- 1) ) +AL ( J- 1) 
THEDGE=THEDGE-DTHETA 
IF (THEDGE .LT. ALFSPIR) GO TO 3070 !done with s p i r a l  p a r t  
I=I+l 
ISEG=NSEG+l-I 
GO TO 3080 
CONTINUE 
CONTINUE !I contains number of segments i n  the s p i r a l  region 
NSEGSPIRsI !exact value 
NSECFLATsNSEG-NSEGSPIB 

C now find segments on f l a t  par t  of sheet 
C 
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C--get segment stretching parameters 
C 

SuMI=O . 0 
DO 3761 I=l.NSEGFLAT-1 

DSLAST=AXLSEG(ISEG)-AXLSEG(ISEG-l) 
H"=(AXLSEG(ISEG-1)-NSEGFLAT*DSLAST) 

DSFIXSDSLAST-HHH*(NSEGFLAT-1) 

3761 SUMI=SuMI+I 

$ / (SUM1 -NSEGFLAT* (NSEGFLAT-1) 

C 

3081 

3061 
3071 

AXLSEG(O)=O.O 
I=l 
DSI=DSFIX+HHH*(I-1) 
XLSEG=DSI/2.0 !arc length t o  filament 
EDGE=DSI 
DO 3061 J=l.NTOTSUB 
IF (XLSEG .LT. AL(J-1) .OR. XLSEG .GT. AL(J)) GO TO 3061 
FRAC- (XLSEG- AL (J- 1 

Z(I)=FRAC*(ZS(J)-ZS(J-l))+ZS(J-l) 
AXLSEG (I) =EDGE 
I=I+l 
DSI=DSFIX+HHH*(I-l) 
XLSEG-EDGE+DSI/2.0 
EDGE=EDGE+DSI 
IF (I .GT. NSEGFLAT) GO TO 3071 
GO TO 3081 
CONTINUE 
CONTINUE 

!arc length t o  outboard edge of segment 

/ (AL (J)  -AL (J- 1 
R(I)=FRAC*(RS(J)-RS(J-~))+RS(J-I) 

C--set W A N  for a l l  segments 

3110 

C 
2030 

C 
c--If 
C 

DO 3110 ISEG4,NSEG 
WAN(ISEG)~(AXLSEG(ISEG)-AXLSEG(ISEG-1))/2.0 
CONTINUE 
R(NOUTl+l) =ROLD (NRING) 
Z(NOUTl+l)=ZOLD(NRING) 
DGAM(NOUTl+l)=DGAMOLD(NRING) 
NOUT=NOUTl 
NRING=NOUTl+l 
NSMALLINRING-1 
GO TO 2030 

CONTINUE 

panel case,  estimate inclinations (only nec. for R-IC) 

IF (IPANEL .Eq. 1) THEN 
DO 920 IX1,NSMALL-1 
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s 
3 

920 

END IF 
C 
C--Get values of S at 
C 

SMID (0) =O . 0 
SMID (NIN) =SUML 
DO 90 I=l,NIN-1 

the midpoints of the original ring locations 

90 SMID (I) = (AL (NSUB* ( I+1) ) +AL (NSUB*I) /2.0 
C 
C--Get values of circulation at the midpoints of the original 
C ring locations 
C 

GMID (0) =GMAX 
DO 100 I=l.NIN 

100 GMID (I) rGMID (I- 1 ) +DGAM( I) 
C 
C--Curve fit f o r  circulation, test for linear or cubic fit 
C 

C 
C--The following block is for a linear fit of circulation 
C 

IF (LINEAR) THEN 

DO 411 I=O,NIN-1 
CO( I) =GMID (I) 

. ci ( I) = (GMID (~+i) -GMID (I) ) / (SMID (1+1) -SMID (I) 1 
C2(1)=0.0 

411 C3(1)=0.0 
C 

C 
C--The following block is for a blended parabola fit of circulation 
C 
C--Get slopes at each interior point 
C 

ELSE 
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DO 110 I=l,NIN-l 

q( I) = ( (GMID (1-1) -GMID (I))*Sl- (GMID (I+1) -GMID (I)) /Sl) 
si- ( SMID (1+1) -SMID (I) 1 / (SMID (I- i ) -SMID (I) ) 

110 
$ / (SMID (I+1) -SMID (1-1) ) 

C 
C--Co.ef’s for interior points 
C 

DO 120 Is1,NIN-2 
Sl-l.O/ (SMID( I+l) -SMID (I)) 
Gl~(GMID(I+l)-GMID(I))*S1 
CO( I) =GMID (I) 

C2 (I)=Sl* (-q( I+1) -2*q (I) +3*G1) 
120 C3(I)pSl*Sl*(q(I+l)+q (I) -2*G1) 

Cl(I)=Q(I) 

C 
C--Coef’s for first segment 

SlXSMID (1) -SMID ( 0 )  
SZ-SMID(2) -SMID(O) 
S3-1.0/(SMID(2)-SMID(l)) 

Cl(o>~S3*((GMID(1)-GMID(O))*S2/Sl-(GMID(2)-GMID(O))*Sl/S2) 
C2(0)sS3* ( (GMID(2) -GMID(O) ) / S a -  (GMID (1) -GMID (0)) /S1) 

C O ( 0 )  =GMID ( 0 )  

C3 (0 )  PO. 0 

C--Coef’s for last segment 
C 

Sl4MID(NIN-2)-SMID(NIN-l) 
S2~sMID(NIN)-SMID(NIN-l) 
S3=1.0/ (SMID (NIN-2) -SMID (NIN) ) 
Gl-GMID (NIN-2) -GMID (NIN-1) 
GZ=GMID(NIN) -GMID (NIN-1) 
CO(N1N- 1)SGMID (NIN- 1) 
Cl (NIN-l)43* (G2*Sl/S2-Gl*S2/Sl) 
C2(NIN-l)43*(Gl/Sl-G2/S2) 
CS(NIN-l)=O.O 

C 

C 

C 
C--Interpolate f o r  new delta circulation values. 
C 
C edge of segment I, call it AXLSEG(1) 
C 

ENDIF 

651 CONTINUE 

XLSEG will now be an array containing the arc length to the 

1-1 
GPREPGMAX 
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DO 130 J=l,NIN 
150 IF(AXLSEG(1) .LT. SMID(J-1) .OR. AXLSEG(1) .GT. SMID(J))GO TO 130 

T=AXLSEG(I)-SMID(J-~) 
GNEW=CO( J-1) +T* (C1 (J-1) +T* (C2 (J-1) +T*C3 (J-1) ) ) 
DGAM( I) PGNEW-GPREV 
GPREPGNEW 
I=I+l 
IF (I .GT. NOUT-1) GO TO 140 
GO TO 160 

130 CONTINUE 
140 CONTINUE 

T-SMID (NIN) -SMID(NIN-l) 
GNEW~CO(NIN-l)+T*(C1(NIN-1)+T*(C2(NIN~l)+T*C3(NIN-l))) 
DGAM (NOUT) =GNEW -GPREV 

C 
C- -Done 
C 

RETURN 
END 

SUBROUTINE ANGLES(RS,ZS,NTOTSUB,THSJB) 
C 
C--Get angles relative to tip for each subinterval 

COMMON /Bl/ R(O:900) ,Z(O:900) ,WVEL(0:900) ,UVEL(0:900), 
$ GAMMA(0:900) ,CORE(O:900) ,TIME(O:5000) ,TENERG(O:5000), 
$ TIMPUL (0 : 6000) 
COMMON /B2/ NRING,PI.DXMAX,INTKOD,NSMALL,VOLTIP,IAXI 
DIMENSION RS(0:8100),ZS(0:8100),THSUB(0:8100) 
REAL*4 MAG 

RT=R(NRING) !tip values of radius 
ZT=Z(NRING) ! and height 

A=-1.0 
B=O . 0 

. C=RS( 0) -RT 
DxZS (0) -ZT 
DOT=A*C+B*D 
CROSS=A*D-B*C 
MAG=SqRT( (A*A+B*B) * (C*C+D*D) 
ARG=DOT/MAG 
IF (ABS(ARG) .GT. 1.0) ARG=SIGN(l.O,ARG) 
THSUB(O)=SIGN(l .O,CROSS)*ACOS(ARG) 

DO 100 I=l.NTOTSUB 
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100 
C 

C 

C 

C 

C 

A-RS(1-1) -RT 
B-ZS(I-l)-ZT 
C=RS(I)-RT 
D-ZS(I)-ZT 
DOT=A*C+B*D 
CROSS=A*D-B*C 
MAG=SqRT((A*A+B*B)*(C*C+D*D)) 
ARG=DOT/MAG 
IF (ABS(ARG1 .GT. 1.0) ARG=SIGN(l.O,ARG) - 

THSUB (1) 4"SUB (I- 1) +SIGN (1 .O , CROSS) *ACOS (ARG) 

RETURN 
END 
SUBROUTINE PULANG(NIN,T"IN) 

COMMON /B1/ R(0:900),Z(0:900),WL(0:900),UVEL(0:900), 
§ GAMMA(0:OOO) ,CORE(O:900) ,TIME(O:6000) ,TENERG(O:5000), 
§ TIMPUL (0 : 6000) 
COMMON /B2/ NRING,PI.DXMAX,INTKOD,NSMALL,VOLTIP,IAXI 
COMMON /TEMP/ BETA(0:QOO) 
REAL*4 MAG 

RT-R(NR1NG) 
ZT=Z(NRING) 

As-1 .O 
B-0 . 0 
C=R ( 0 )  -RT 
DlZ(0) -ZT 
DOT=A*C+B*D 
CROSS=A*D-B*C 
MAG=SqRT((A*A+B*B)*(C*C+D*D)) 
ARG=DOT/MAG 
IF (ABS(ARG) .GT. 1.0) ARG=SIGN(l.O,ARG) 
BETA(O)=SIGN(l .O ,CROSS)*ACOS(ARG) 

DO 100 I=l,NIN 
A=R(I-l)-RT 

C=R(I)-RT 

DOT=A*C+B*D 

MAG=SqRT( (A*A+B*B) * (C*C+D*D) ) 
ARG=DOT/MAG 
IF (ABS(ARG) .GT. 1.0) ARG=SIGN(l.O,ARG) 

B-Z(I-l)-ZT 

D=Z (I) -ZT 

CROSS=A*D-B*C 7 

100 BETA(1) =BETA( 1-11 +SIGN( 1.0. CROSS) *ACOS (ARG) 
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C 

C 
THNIN-BETA (NIN) 

RETURN 
END 
FUNCTION XNU(THETA) 
DATA PI/3.141592054/ 
XNU-2.0/3.0 
IF (THETA .LT. 2.0*PI) THEN 
XNlJ~(1.0/(2.0*PI-1.0))-(1.O/(THETA-1.0))+2.0/3.0 

ENDIF 
RETURN 
END 
SUBROUTINE LUMPS (TIMEY) 

C 
C--This subroutine looks at the rolled up part of the sheet and 
C determines if part of it should be truncated and lumped into 
C the tip vortex 
C 
C 

COMMON /B1/ 
$ 
$ 
COMMON /B2/ 
COMMON /TH/ 
COMMON /BQ/ 

ring. 

RADIUS (0 : 900) ,HEIGHT (0 : 900) , WVEL(0 : 900) , W E L  (0 : 900) , 
GAMMA(0:QOO) ,CORE(O:QOO) ,TIME(O:5000) ,TENERG(O:5000), 
TIMPUL (05000) 
NRING,PI,DXMAX,INTKOD,NSMALL,VOLTIP.IAXI 
THETA(O:900) ,THMAX 
IWR 

REAL*4 LAMl3DA.K 
C 
C-- Get segment angles relative to horizintal axis 
C 

C 
C--See if any rings exceed the cut-off angle THMAX 
C 

CALL GETANG 

M=O 
IINSMALL-1 ! Highest segment number 

M=M+l 
1-1-1 
GO TO 20 

! M will contain the # of rings to be lumped 

20 IF (THETA(1) .LT. THMAX) GO TO 10 

C 
C--Now M contains the # of rings to be lumped into the core 
C 

C 
C--Have M rings to lump, first find new position of tip by conserving 
C impulse. 

10 IF (M .Eq. 0) GO TO 999 I Re turn 
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C 
C GTIP = new t i p  circulat ion 
C RTIP new t i p  radius 
C HTIP = new t i p  height 
C 

GTIP=O . 0 
DO 30 IPNSMALL-M+l.NRING 

30 GTIP=GTIP+GAMMA(~) 
C 

IF (IAXI .Eq. 1) THEN 
RT2=O. 0 
DO 40 IXNSMALL-M+l,NRING 

40 RT2=RT2+GAMMA(I)*RADIUS(I)**2 
RTIPPSqRT (RT2/GTIP) 
HTIP-0 . 0 
DO SO 1-NSMALL-M+l.NRING 

HTIP=HTIP/RT2 

RT2m0.0 
DO 41 IXNSMALL-M+l,NRING 

RTIP=RT2/GTIP 
HTIP-0 . 0 
DO 61 I=NSMALL-M+l,NRING 
HTIP=HTIP+GW ( I) *HEIGHT(I 1 
HTIP=HTIP/GTIP 

60 HTIP=HTIP+GAMMA(I)*HIGHT(I)*RADIUS(I)**2 

ELSE 

41 RT2=RT2+GAMMA( I) *RADIUS (I) 

61 

END IF 
CTIP=O -0  

IF (IAXI .Eq.l) THEN 
C 

C 
C 
C--Get new t i p  core s i z e  by conserving kinetic  energy. 
C 
C 

C 
C--Now get  the various sums needed t o  compute TTBAR 
C 

Only get  new core s i z e  f o r  the axi case 

First compute t o t a l  kinetic  energy of system. 

CALL TOTENG(TKE) 

suMl=O .o 
DO 60 Im1,NSMALL-M 
TIBAR=GAMMA( I) **2*RADIUS (I) * (ALOG(8.O*RADIUS(I) /CORE(I) ) 

3 -1.76)/2.0 
60 SUMl=SUMl+TIBAR 

C 
SUM2=O. 0 
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DO 70 1-1,NSMALL-M 
DO 70 J=l.NSMALL-M 
IF (I .NE. J) THEN 
Rl=SqRT((HEIGHT(I)-HEIGHT(J))**2+(RADIUS(I)-RADIUS(J))**2) 
RZ=SqRT( (HEIGHT(1) -HEIGHT(J))**2+(RADIUS(I)+RADIUS(J))**2) 
LAMBDA=(RZ-Rl)/(R2+Rl) 
CALL ELLIP (LAMBDA, K ,E) 
SUM2=SUM2+GAMMA( I) *GAMMA( J) * (Rl+R2) * (K-E) /2.0 

ENDIF 
70 CONTINUE 

SUM3=0.0 
DO 80 I=l.NSMALL-M 

C 

Rl=SqRT((HEIGHT(I)-HTIP)**2+(RADIUS(I)-RTIP)**2) 
R2=SqRT( (HEIGHT( I) -HTIP) **a+ (RADIUS (I) +RTIP) **2) 
LAMBDA=(R2-Rl)/(R2+Rl) 
CALL ELLIP (LAMBDA, K, E) 
SUMS=SUM3+GAMMA( I) *GTIP* (Rl+R2) * (K-E) /2.0 

80 CONTINUE 
C 

C 
C--Get energy contribution of tip. 
C 

C 
C--Now get core size corrosponding to this energy. 
C 

CZZZ=EXP(2.0*TTBAR/(GTIP**2*RTIP)+1.76) 
CTIP=8.0*RTIP/CZZZ 

END IF 

suM4=suM3 

TTBAbTKE-SUMl-SUM2-SUM3-SUM4 

C 

C 
C--Put tip variables into main arrays 

RADIUS (NRING)=RTIP 
HEIGHT(NRING)=HTIP 
GW(NR1NG) -GTIP 
CORE(NRING)=CTIP 

C--Compute new volume of tip ring 
C 

C 
C--Now rediscretize remaining portion of sheet. 
C 

VOLTIP=2.0*PI*PI*RADIUS(NRING)*CORE(NRING)**2 

N ININSMALL -M 
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NOUTxNSMALL 
GMM=GMAX-GAMMA(NRING) 
CALL REDISC(RADIUS,HEIGHT,GAMMA,NIN,NOUT,GMM,SUML,DELTAL,TIMEY) 

C 
C--done 
C d 

999 RETURN 
END 
SUBROUTINE GETANG 

C 
C--This routine computes the angles of the segments relative to 
C the horizontal 
C 
C 

COMMON /B1/ 
$ 
$ 
COMMON /B2/ 

C COMMON /B3/ 
COMMON /TH/ 

axis 

RADIUS(0 : 900) ,HEIGHT(O:QOO) ,WVEL(O : 900) .WEL(O : 900) . 
GAMMA(0 : 900) , CORE (0 : 900) , TIME (0 : 6000) , TENERG (0 : 5000) , 
TIMPUL(0: 6OOO) 
NRING,PI,DXMAX,INTKOD,NSMALL,VOLTIP,IAXI 
DMIN (0 : 900) 
THETA(O:QOO),THMAX 

DIMENSION DT(0 : 900) 
C 
C--Get increment f o r  first angle 
C 

DT(O)mATAN( (HEIGHT(1) -HEIGHT(O) )/(RADIUS (1) -RADIUS (0) ) ) 
THETA(O)=DT(O) 

C 
C--Get THETA for the rest 
C 

DO 10 Is1,NSMALL-1 
XMPRADIUS (I - 1) 
XI=RAD IUS ( I ) 
XP=RADIUS (I+ 1) 
YMXHEIGHT(1-1) 
Y IxHEIGHT (I ) 
YP=HEIGHT(I+l) 

C 
C--Get sign of cross product of Vi and Vi+l 
C 

SCROSSpSIGN(l.O,(XI-XM)*(YP-YI)-(XP-XI)*(YI-YM)) 
VMAGS=SqRT( ((XI-XM)**2+(YI-W)**2)*( (XP-X1)**2+(YP-Y1)**2)) 
DOT=(XI-XM) * (XP-XI) + (YI-YM)* (YP-YI) 

C 
C--Watch out for numerical inaccuracy in argument of arccos 
C 

DT(1) =O . 0 
IF (ABS(DOT/VMAGS) .LE.  1 .O) DT(I)=SCROSS*ACOS(DOT/VMAGS) 
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THETA ( I) =THETA ( I - 1) +DT ( I) 
CONTINUE 10 

C 

C 

RETURN 
END 

SUBROUTINE DOUBLET (W , Z , VXPRM , WPRM , VRpRM , VTHPRM) 

C--Calculates the higher order velocity components i n  the spira l  region 
C 
c w  radius of control point 
c z  height of control point 
C VXPRM 
C WPRM V sub y prime i n  the notes, axial velocity component 
C GMTO strength of t i p  a t  s tart  of run 
C 

V sub x prime i n  the notes, radial ve loc i ty  component 

COMMON /B1/ RADIUS(O:900) ,HEIGHT(O:900) ,WVEL(0:900) .WEL(O:900) , 
$ GAMMA(0:OOO) ,CORE(0:900) ,TIME(O:6000) ,TENERG(O:6000), 
$ TIMPUL(0: 6000) 
COMMON /B2/ NRING,PI,DXMAX,INTKOD,NSMALL,VOLTIP,IAXI 
COMMON /El/ TAUO,BDUM,CDUM,DDUM,TAU2LOOP 
COMMON /NOW/ TIMENOW,BIGRREF 
COMMON /E2/ AO,Al,A2,A3,RHOSTAR,A 
COMMON /F1/ ALPLAST,GMTO 
COMMON /ZZ/ ZX0,ZYO 
COMMON /B9/ IWR 
DIMENSION B(7,2) ,D(7.2) 
DATA B /.0063006800, .0013100600, .000674976 , .000319442 , 

$ .0002020870, .0001387070, .000100337 , 
$ -1.38667 , -1.36294 , -1.34687 , -1.33015 , 

DATA D /.0010074100. .0001646680, .0000666961, .0000312179, 
$ .0000167322, .0000101938. .0000115224, 
$ -2.37327 , -2.28212 , -2.40883 , -2.36051 , 

!B(coef. , exponent) 

$ -1.31621 , -1.30109 , -1.28262 / 

$ -2.17250 , -2.22138 , -2.80713 / 
BIGRREFsO. 0966063 
NCOEFs7 

BIGRpRM=BIGRREF*(A*TIME(l))**(2.0/3.0) !constant i n  time 
RPRIME=SqRT((W-RADIUS(NRING))**2+(Z-HEIGHT(NRING))**2) 
R=RPRIME/BIGRPRM 
SINTST=(Z-HEIGHT(NRING))/RPRIME 
COSTST=(W-RADIUS(NRING))/RPRIME 
THETAST=ATAN2(SINTST,COSTST) 
wRM=o. 0 
vTHPRM=o . 0 
DO 10 N=l,NCOEF 

C 
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RRR=GAMMA(NRING)/GMTO 
TAUA=TAU2LOOP+ALPROT(TIMENOW)*(O.0O7O2Ol5)/(2.O*PI) 
BN=B(N , 1) *TAUA**B (N ,2) 
DN=D (N ,1) *TAUA**D (N ,2) 
DDVR= (BN*COS (N* (THETAST+PI/2.O-ALPROT(TIMENOW) ) ) 

ladjust for varying tip strength 

$ -DN*SIN(N* (THETAST+PI/2 .O-ALPROT(TIMEN0W)))) 

DDVTH=(BN*SIN(N*(THETAST+PI/2.O-ALPROT(TIMENOW))) 
$ +DN*COS(N* (THETAST+PI/2.O-ALPROT(TIMENOW) ) 1) 

$ *(N/R**(N+1))*RRR*(A**(4.0/3.O)*TIMENOW**(l.O/3.O~/BIGRP~~ 

$ *(N/R**(N+1))*RRR*(A**(4.0/3.O)*TIMENOW**(l.0/3.0)/BIGRPRM) 
VRPRM =VRPRM+DDVR 

10 VTHPRM=VTHPRM+DDVTH 
VXPRM=VRPRM*COSTST-VTHPRM*SINTST 
WPRM=VRPRM*SINTST+VTHPRM*COSTST 

C 

C 
ALF=ALPROT(TIMENOW) 

RETURN 
END 
FUNCTION ALPROT(TIMEN0W) 
COMMON /B1/ RADIUS(0:OOO) ,HEIGHT(O:QOO) ,WvEL(O:QOO) ,WEL(O:OOO), 

$ 
$ TIMPUL(0 : 6000) 

GAMMA(0 : 900) , CORE (0 : 900) , TIME (0 : 5000) , TENERG (0 : 5000) , 

COMMON /B2/ NRING,PI,DXMAX,INTKOD,NSMALL.VOLTIP,IAXI 
COMMON /El/ TAUO,B,C,D,TAU2LOOP 
COMMON /F1/ ALPLAST.GMT0 

ALPROT=ALPLAST-PI/2.0 

RETURN 
END 
SUBROUTINE CENSPIR(VXP,WP) 

C 

C 

C--Calculates the velocity induced at the spiral center due to the 
C inner spiral region 

COMMON /Bl/ RADIUS(0:OOO) ,HEIGHT(O:QOO) ,WvEL(O:QOO) ,WEL(O:900), 
$ GAMMA(0:OOO) ,CORE(O:OOO) ,TIME(O:5000) .TENERG(O:5000), 
$ TIMPUL (05000) 
COMMON /B2/ NRING,PI,DXMAX,INTKOD,NSMALL,VOLTIP,IAXI 
COMMON /El/ TAUO.B.C,D,TAUZLOOP 
COMMON /E2/ AO,Al,A2,A3,RHOSTAR,A 
COMMON /NOW/ TIMENOW ,BIGRREF 
COMMON /ZZ/ ZX0,ZYO 

TAUOLOOP=O.24016 
BGROLOOP=0.32094 

CC=A**(4.0/3.O)*TIMENOW**(l.0/3.O)/BIGRPRM 

C 

BIGRPRMPBGROLOOP*(A*TIME(I))**(~ .0/3 .o) 
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ALFRoALPROT (TIMENOW) 
TAUA=TAUOLOOP+ALFR*(0.60702015)/(2.0*PI) 

ALFtALPROT (TIMENOW) 

VXTILD~-O.00029091*CC*TAUA**(-2.30525) 
WTILD~-0.00424515*CC*TAUA**(-1.45439) 
VXP=VXTILD*COS (ALFR) -WTILD*SIN (ALFR) 
WP=VXTILD*SIN (ALFR) +WTILD*COS (ALFR) 

RETURN 
END 

C 

C 

C 

SUBROUTINE VELOUT (UO, VO) 
COMMON /VELO/ R, X ,  Y, DX, DY. W, G 
REAL M1, LAM, KO, K1. K2, KLO, KL1, KL2, K, KP 
uo = 0.0 
vo = 0.0 
PI = 3.141592654 
R1 = SqRT(X**2+Y**2) 
R2 = SqRT((X+2.*R)**2+Y**2) 
LAM = (R2-Ri)/(Rl+R2) 
M1 1. - LAM**2 
IF (R1.Eq.O) GO TO 730 
IF (LAM.Eq.0) GO TO 730 
DXRl = X/R1 
DYRl = Y/Rl 
DXR2 = (X+2.*R)/R2 
DYR2 - Y/R2 
DXL = (DXRZ-DXRl)/(RZ+Rl) - LAM/(R2+Rl)*(DXRI+DXR2) 
DYL (DYR2-DYRI)/(RZ+Rl) - LAM/(R2+RI)*(DYRl+DYR2) 
KO = 1.3862944 
Kl = .1119723 * Mi 
El = .4630161 * M1 
K2 = .0725296 * M1**2 
E2 = .lo77812 * M1**2 
KLO = .6 
KL1 = .1213478 * Mi 
EL1 = .a452727 * M1 
KL2 = .0288729 * M1**2 
EL2 = .0412496 * M1**2 
K KO + K1 + K2 - (KLO + KLl + KLZ)*LOG(Ml) 
E 1. + El + E2 - (EL1 + ELZ)*LOG(Ml) 
KP= E / LAM / Ml - K / LAM 
EP =(E - K) / LAM 
DXR = DXRl + DXR2 
DYR = DYR1 + DYR2 
RR = R1 + R2 
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UO = G*W/PI/ (R+X) * (DYR*(K-E) +RR* (KP-EP) *DYL) 
VO =-G*W/PI/(R+X) * (DXR*(K-E)+RR*(KP-EP)*DXL) 
END 
SUBROUTINE VELIN (UIN, VIN) 

COMMON /VELO/ R. X, Y, DX, DY, W, G 

730 RETURN 

C 

PI = 

COST 
SINT 
qs = 
94 = 
q3 = 
q2 = 
q1 = 

C 
3.141592654 - DX / SqRT(DX**2+DY**2) 
= DY / SqRT(DX**2+DY**2) 
(X**2 + Y**2)/W**2 
(Y*COST - X*SINT)/W 
(X*COST + Y*SINT)/W 
qS - 2.*q3 + 1. 
q6 + 2.*q3 + 1. 

740 

* 
* 
* 
* 

C 

C 
750 

IF (q4.Eq.O) THEN 
ATN = 0.0 
GO TO 740 

END IF- 
ATN = ATAN( (1. -q3) /q4) +ATAN( (1. +q3)/q4) 
CONTINUE 
U1 =-SINT*LOG(q2/ql)+2.*COST*ATN 
V1 =-COST*LOG(q2/ql)-2.*SINT*ATN 
U2 = (X/2./R) * U1 
V2 = (X/2./R) * V1 

+ .6*W/R *( LOG(qZ*Ql) 
-q3*LOG(Q2/ql) 
+2. *q4*ATN 
-4.) 

UIN =-G / 4. / PI * (U1 + U2) 
VIN = G / 4. / PI * (Vi + V2) 

RETURN 
END 
SUBROUTINE VEL10 (UIO, VIO) 
COMMON /VELO/ R, X, Y, DX, DY, W, G 
PI = 2* ASIN(1.) 
COST = DX / SqRT(DX**2+DY**2) 
SINT = DY / SqRT(DX**2+DY**2) 
q6 = (R**2 + Y**2)/W**2 
q4 = (Y*COST + R*SINT)/W 
q3 (-R*COST + Y*SINT)/W 
92 = 96 - 2*q3 + 1. 
91 - q6 + 2*q3 + 1. 
UIO = 0.0 
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VI0 - 0.0 
Rl - SqRT(X**2+Y**2) 
IF (Rl.EQ.O.0) GO TO 720 
UIO =-G*W/PI * ( 1. + X/R/2.) * Y/Rl/Rl 
VI0 = G*W/PI * ( (  1. + X/R/2.) * X/Rl/Rl + .5/R*LOG(Rl/8/R)) 

C 

720 VI0 - G*W/PI * LOG( 8*R/W /2 /R 
* + VI0 

RETURN 

END 
SUBROUTINE VEL2D (UIN, VIN) 

COMMON /VELO/ R, X, Y. DX, DY, W. G 
PI - 2*ASIN(1.) 
COST - DX / SqRT(DX**2+DY**2) 
SINT = DY / SQRT(DX**2+DY**2) 

Q4 * (Y*COST - X*SINT)/W 
93 = (X*COST + Y*SINT)/W 
Q2 = Q5 - 2*Q3 + 1. 
Ql - Q5 + 2*Q3 + 1. 
IF (Q4.EQ.O) THEN 

C 

C 

qs - (X**2 + Y**2)/W**2 

ATN = 0.0 
GO TO 740 

END IF 
ATN ATAN((l.-Q3)/q4)+ATAN((l.+Q3)/Q4) 

IF ((ql.EQ.0) .OR. (q2.Eq.O)) THEN 
740 CONTINUE 

UIN - 0 
VIN - 0 
GO TO 760 

END IF 
U1 =-SI#T*LOG(q2/ql)+2.*COST*ATN 
V1 ~-COST*LOG(q2/ql)-2.*SINT*ATN 
UIN -G / 4./ PI * Ul 
VIN = G / 4./ PI * Vl 
END 
SUBROUTINE VEL2DF (UIN, VIN) 

COMMON /VELO/ R, X, Y, DX, DY, W, GG 
G=GG*2.0*W 
PI = 3.141592654 
QS - SqRT(X**2 + Y**2) 
IF (Q6.EQ.O) GO TO 760 
COST = X / 95 

750 RETURN 

C 
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SINT - Y / q5 
U1 - SINT/q6 
V1 = COST/q5 . 
UIN =-G/2./PI * Ul 
VIN = G/2./PI * V1 
END 

750 RETURN 
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